PHYTIUM飞腾

FT-1500A/4 高性能通用微处理器 数据手册

(V1.8)

天津飞腾信息技术有限公司 二零一九年五月

版本历史

以下为此文档释放过的更新版本

日期	版本号	作者	更新说明	
2014.10.20	1.0	技术支持部	初版	
2014.12.26	1.1	技术支持部	调整文档结构	
2015.04.27	1.2	技术支持部	调整文档结构	
2015.09.06	1.3	技术支持部	更新上电时序	
2015.12.19	1.3.1	技术支持部	调整上电时序	
2016.03.12	1.4	技术支持部	增加 GPIO 复用列表和装焊温度曲线等内容;调整	
2010.03.12	1.4	双小又行印	了文档结构及部分内容	
2016.07.05	1.5	技术支持部	调整文档结构	
2018.2.07	1.6	技术支持部	调整文档结构;增加 FCR 寄存器说明;完善 spi 寄	
2018.2.07	1.0	双小又行前	存器配置寄存器列表。	
2018.06.05	1.7	技术支持部	完善 spi 寄存器配置寄存器列表;完善电气特性	
2019.05.09	1.8	技术支持部	新增芯片介绍;完善 LPC 说明;调整文档结构	

技术支持邮箱: support@phytium.com.cn

版权所有© 天津飞腾信息技术有限公司 2019。

此文档用于指导用户的相关应用和开发工作。天津飞腾信息技术有限公司对此 文档内容拥有版权,并受法律保护。

目 录

1	芯片	介绍	1
2	技术	₹指标	1
3	功能	b描述	2
4	CPU	」接口	2
	4.1	地址空间分配	2
		4.1.1 PCIE 配置、IO 和 MEM32 地址空间划分	3
		4.1.2 MIO 地址空间	
		4.1.3 GMAC 控制器地址空间	3
	4.2	DDR 接口	4
	4.3	PCIE 接口	
		4.3.1 寄存器说明	
		GMAC 接口	
	4.5	LPC 接口	
		4.5.1 寄存器说明	
	4.6	SPI 接口	8
		4.6.1 寄存器说明	
	4.7	UART 接口	12
		4.7.1 寄存器说明	
	4.8	I2C 接口	
		4.8.1 寄存器说明	25
	4.9	GPIO 接口	40
		4.9.1 GPIO 复用说明	40
	4	4.9.2 GPIO 寄存器说明	42
	4.10)上电时序	44
5	电气	〔特性	47
	5.1	极限工作条件	47
	5.2	典型工作参数	47
6	封装	き数据	48
	6.1	封装尺寸	48
7	装焊	旱温度曲线	49
	7.1	无铅焊接温度曲线中各温区的作用	49
	7.2	有铅焊接温度曲线中各温区的作用	50
8	引胠	甲描述	51

FT-1500A/4 数据手册

8.1	通用 IO 类引脚(118 PIN)	51
8.2	GMAC 引脚(28 PIN)	57
8.3	PCIE 引脚(140 PIN)	58
8.4	DDR3 引脚(312 PIN)	62
8.5	电源引脚(552 PIN)	72

1 芯片介绍

FT-1500A 系列 4 核处理器芯片(FT-1500A/4)集成 4 个自主开发的 ARMv8 指令集兼容处理器内核 FTC660,采用片上并行系统(PSoC)体系结构,主要面向各类桌面终端、便携式终端和轻量级服务器等应用领域,满足通用信息系统中的网络服务、邮件服务、存储服务、办公、上网、文字处理、图形图像处理、音视频处理等业务需求。

2 技术指标

主要技术指标如下:

- ARM V8 架构,支持 ARM64 指令集
- 集成 4 个 FTC660 处理器核
- 核心时钟频率 1.5GHz (标配)
- L1 数据 Cache 32KB
- L2 Cache 8MB
- L3 Cache 8MB
- 峰值性能 24GFlops@1.5GHz
- 典型功耗 15W
- 核电压 0.9V
- 集成 2 个 64 位总线 DDR3 存储控制器,速率可达 1600Mbps,访存带宽可达 25.6GB/s
- 集成 32 Lane PCI Express v3.0 接口,最多支持 4 个 PCIE root complex,不能作为 endpoint 使用
- BGA1150 封装, 0.914mm 球间距, 封装尺寸 37.5mmX37.5mm
- IO 电压 1.8V,包括 UART、I2C、GMII、GPIOA、GPIOB、GPIOC、GPIOD、LPC
- 支持电源关断、时钟关断、DVFS
- 支持商业、工业等分级,温度范围为标准的商业温度范围(0°C~65°C)和工业级温度范围(-40°C~+85°C)

3 功能描述

表 3-1 功能描述

硬件特性		说明		
Core	兼容 ARM V8 指令集 的 FTC660 核 (FTC660)	4 个,典型工作频率 1.5GHz。支持电源关断		
存储控制器	DDR3 SDRAM 控制器	2 个控制器,支持带 ECC 的 DDR3 DIMM,支持 RDIMM、 UDIMM、SODIMM、表贴颗粒		
	PCIE3.0 RootComplex	2个x16,每个x16可分拆为2个x8,独立控制		
	千兆以太网控制器	1 个控制器,均支持 1000M/100M/10M 自适应,物理接口		
	12以从州江南部	支持 MII、GMII 规范,电压 1.8V		
	Flash 控制器	1个 SPI 接口的 Flash 控制器,支持 4个片选,单片最大支		
	Flasii 红刺鱼	持容量为 512MB, 电压 1.8V		
外设	UART	2个 UART, 其中 UART0 为 9 线全功能串口, UART1 为 3		
外以	UAKI	线调试串口, 电压 1.8V, 调试串口默认使用 UART1		
	I2C	2个 I2C Master 控制器,电压 1.8V		
	GPIO	4 个 8 位 GPIO 接口, GPIOA[0:7], GPIOB[0:7],		
	GFIO	GPIOC[0:7],GPIOD[0:7],电压 1.8V		
	LPC	1 个 LPC 接口,兼容 Intel Low Pin Count 协议,可接 SuperIO		
	LFC	等外围芯片, 电压 1.8V		
	内核电源	0.9V		
电源	存控电源	1.5V		
	IO 电源	1.8V		

4 CPU接口

4.1 地址空间分配

全局寄存器地址空间分配如下:

表 4-1 系统地址空间

地址空间	设备		
0x000_00000000~0x000_1FFFFFF	SPI,预留 512MB		
0x000_20000000~0x000_27FFFFF	LPC,预留 128MB		

	预留 128MB,包括 MIO(uart/i2c/wdt/gpio),cru,		
0x000_28000000~0x000_2FFFFFFF	Error, icu, MCU0、MCU1、pcie 控制寄存器, PMA		
	配置寄存器,gmac, pmc, mmu, gpv 等		
0-000 20000000 0-000 2000000	DTI, 预留 160MB(现在 32MB+4MB)包括 generic		
0x000_30000000~0x000_39FFFFFF	Timer、0x000_300000000 是 ROMTable 基址		
0x000_3A000000~0x000_3AFFFFFF	MN,16MB		
0x000_40000000~0x000_7FFFFFF	PCIE 的配置、IO 和 MEM32 空间,1GB		

4.1.1 PCIE 配置、IO 和 MEM32 地址空间划分

表 4-2 PCIE 配置、IO、MEM32 地址空间划分

地址范围	大小	用途
0x000_40000000~0x000_4FFFFFFF	256MB	配置空间
0x000_500000000~0x000_5FFFFFFF	256MB	IO 空间
0x000_60000000~0x000_7FFFFFFF	512MB	MEM32 空间

4.1.2 MIO 地址空间

表 4-3 MIO 内部空间划分

起始地址空间	设备名	说明
0x00000000	UART0	9 针全线制串口
0x00001000	UART1	3线制串口
0x00002000	I2C0	既可做 Master 也可做 Slave
0x00003000	I2C1	既可做 Master 也可做 Slave
0x00004000	WDT0	看门狗
0x00005000	WDT1	看门狗
0x00006000	GPIO	4个8位接口,最多32位
其它	保留	

4.1.3 GMAC 控制器地址空间

表 4-4 GMAC 控制器地址空间划分

GMAC 控制器 0 基地址: 0x28c00000 GMAC 控制器 1 基地址: 0x28c02000

地址偏移	大小	描述	
0x0000~0x0FFF	4KB	GMAC 寄存器空间	

0x1000~0x1FFF	4KB	GMAC DMA 寄存器空间
---------------	-----	----------------

4.2 DDR 接口

DDR 接口支持 X8 和、X4 以及 x16 两三种 DDR 颗粒类型, 如表 4-5 所示。 DDR 接口支持 1.5V DDR3 的 RDIMM、UDIMM、SODIMM 等内存条类型。

 颗粒芯片位宽
 颗粒芯片数目

 X16
 4

 X8
 8

 X4
 16

 注:该表芯片数目中,不包含 ECC 内存颗粒

表 4-5 DDR 接口支持的内存形式

4.3 PCIE 接口

PCIE 接口支持 PCIE3.0 规范,兼容 PCIE2.0、PCIE1.0 规范,其特点如下:

- 包含 2 个 x16 root complex 接口, PCIE 0 和 PCIE 1;
- 每个 X16 最多拆分为 2 个 root, 也就是说每个 X16 的拆分模式可以为 1 个 X16 或者 2 个 X8;
- 可支持 X1, X2, X4, X8 支持翻转 (逆序);
- PCIE 翻转兼容说明;

若是 PCIE0[0:7]、PCIE1[0:7]翻转(逆序)后连接 PCIE 插槽,则只支持 X8 外设。而 PCIE0[8:15]、PCIE1[8:15]则不受此约束限制,用户可根据需要进行配置。

4.3.1 寄存器说明

4.3.1.1 基地址

表 4-6 PCIE 基地址

名称	基地址	
PCIE	0x2810_0000	

4.3.1.2 寄存器列表

表 4-7 寄存器描述

偏移地址	名称	读写方式	说明
0x0E00	REG_PEU_BIF_MODE	R/W	拆分模式寄存器
0x0E08	REG_PEU_TX_LANE_FLIP_EN	R/W	链路反转设置寄存器

4.3.1.2.1 拆分模式寄存器(0x0E00)

表 4-8 拆分模式寄存器

位	名称	读写方式	默认值	说明
[3:2]	PCIE1_bif_mode	R/W	0x1	PCIE 1 的分拆模式设置: •00-全部关闭 •01-一个 16x •10-两个 8x
[1:0]	PCIE0_bif_mode	R/W	0x1	PCIE 0 的分拆模式设置: •00-全部关闭 •01-一个 16x •10-两个 8x

4.3.1.2.2 链路反转设置寄存器(0x0E08)

表 4-9 链路反转设置寄存器

位	名称	读写方式	默认值	说明
[15]	pcie1_c3_tx_lane_flip_en	R/W	0x0	
[14]	pcie1_c2_tx_lane_flip_en	R/W	0x0	
[13]	pcie1_c1_tx_lane_flip_en	R/W	0x0	
[12]	pcie1_c0_tx_lane_flip_en	R/W	0x0	
[11]	pcie1_c3_rx_lane_flip_en	R/W	0x0	
[10]	pcie1_c2_rx_lane_flip_en	R/W	0x0	
[9]	pcie1_c1_rx_lane_flip_en	R/W	0x0	为 1 表示手动设置 lane 反转
[8]	pciel_c0_rx_lane_flip_en	R/W	0x0	为 I 农小于幼以且 Ialle 及拉
[7]	pcie0_c3_tx_lane_flip_en	R/W	0x0	
[6]	pcie0_c2_tx_lane_flip_en	R/W	0x0	
[5]	pcie0_c1_tx_lane_flip_en	R/W	0x0	
[4]	pcie0_c0_tx_lane_flip_en	R/W	0x0	
[3]	pcie0_c3_rx_lane_flip_en	R/W	0x0	
[2]	pcie0_c2_rx_lane_flip_en	R/W	0x0	

[1]	pcie0_c1_rx_lane_flip_en	R/W	0x0
[0]	pcie0_c0_rx_lane_flip_en	R/W	0x0

4.4 GMAC 接口

以太网控制器(GMAC)的主要功能是在兼容 IEEE802.3-2005 标准的以太 网中发送和接收数据,支持 GMII 和 MII 的 PHY 接口。

GMAC 接口特点:

- 支持速率 1000Mbps/100Mbps/10Mbps
- 支持 IEEE 802.3-2005 Ethernet MAC, Gigabit Media Independent Interface (GMII) / Media Independent Interface (MII)

芯片包含一路 GMAC 接口, GMAC 接口信号主要分三类: 时钟接口、数据接口和管理接口。接口信号列表见 GMAC 引脚。

外围接口的需求:

- CPU 的 OSC CLK 125MHz 时钟, 需外部提供。
- GMU CLK OSC、G1 CLK TX 和G1 CLK RX在不使用情况下接地。
- 如果没有使用 GMAC,建议 125MHz 外部时钟输入引脚 GMAC_OSC 接地。
- 时钟需求: GMAC 控制器有 1 个外部时钟输入引脚 GMU_CLK_OSC, 频率为 125MHz, 需外部提供。
- 外围接口电路与下列引脚连接的信号线,有等长需求,如表 4-10 所示,每个分组内各信号线要求等长。数据信号比时钟信号长 0~0.2ns,下表中每组的首个信号为该组的时钟信号,其它为数据信号。

组	1	2	3
	G1_CLK_GTX	G1_CLK_RX	G1_MDIO
	G1_TX0~7	G1_COL	G1_MDC
I/O PAD	G1_TXEN	G1_CRS	
I/OTAD	G1_TXER	G1_RX0~7	
		G1_RXDV	
		G1_RXER	

表 4-10 GMAC

4.5 LPC 接口

LPC (Low Pin Count) 主要用来连接鼠标、键盘、串口、低速 Flash 等设备。 LPC 接口采用 1.8V 的 LVCMOS,因而在连接 LPC 设备时需要进行电平转换。 芯片集成了一个 LPC 控制器, LPC 接口建议通过 CPLD/FPGA, 进行电平的转换

LPC 的时钟信号为 GPIOD2_EXT_LPC_LCK, 时钟频率为 33MHz, 必须由外部提供。CPU 中的 LPC 控制器只支持 4 字节对齐地址的访问, 如果使用单字节访问, 就会造成部分地址无法使用, 因此建议使用 4 字节访问,详情请参考《FT-1500A 平台 LPC 兼容规范》。

4.5.1 寄存器说明

4.5.1.1 基地址

表 4-11 LPC 基地址

名称	基地址
LPC	0x27FF_0000

4.5.1.2 寄存器列表

表 4-12 LPC 寄存器说明

偏移地址	名称	读写方式	默认值	含义
0 EEE0	串行中断配置	D/W	221 0000 0000	设置 LPC 接口数据读取使能、起始周期、串行
0xFFE8	寄存器[31:0]	R/W	32'h8000_0000	中断模式和支持设备数量。

注:操作 LPC 的寄存时,请确保 LPC 的外部电路连接正常,否则读写 LPC 寄存器会失败。

4.5.1.2.1 串行中断配置寄存器(0xFFE8)

表 4-13 串行中断配置寄存器

地址	名称	读写方式	默认值	含义
0x27FF_FFFC	lpc addr cfg	R/W	8'b11100100	配置APB接口地址的设备
0x2/11_1110	reg[7:0]	IX/ VV	8 011100100	类型
027EE EEE9	lpc long wait	D/W	32'h0	长等待超时控制寄存器
0x27FF_FFF8	ctrl req[31:0]	K/W	32 110	人寺付妲門
	1		32'h0	中断状态 (串行中
0x27FF_FFF4	lpc int status	RO		断)bit29~0:串行中断,
	reg[31:0]			bit30DMA请求中断
0x27FF_FFF0	lpc int clear	R/W	32'h0	清除中断寄存器

	reg[31:0]			
0x27FF_FFEC lpc msg length cfg reg[3:0]		R/W		firmware memory类型的 报文长度配置寄存器(暂 未使用)
0x27FF_FFE8	nu_serirq_confi g[31:0]	R/W	32'h8000_00 00	配置寄存器(bit31: 针对 读数据每次读4 bytes数据 使能标志(1'b1: 读 1byte); bit1~0:起始周 期配置(2'b11: 8; 2'b10:6; 否则4, 默认4 clk), bit2: 串行中断模 式配置默认连续模式 默 认为连续模式), bit3~4: 支持的串行中断 设备数量(2'b01 代表 32 否则16默认16)
0x27FF_FFE4	lpc err status reg[2:0]	RO	3'h0	错误状态寄存器,记录最近一次发生错误的状态。3'b000:无效3'b010:长等待超时3'b001:短等待超时3'b100:SYNC error3'b110:非法的读写操作
0x27FF_FFE0	lpc firmware id sel reg[2:0]	R/W	4'h0	firmware memory设备ID 选择配置寄存器 3'b001 22: 19作为ID 3'b010 23: 20作为ID 3'b011 24: 21作为ID 默认30: 27作为ID
0x27FF_FFDC	lpc DMA ID cfg reg[2:0]	R/W	3'h6	DMA 设备ID配置寄存器

4.6 SPI 接口

SPI 接口仅支持连接用于存储 BIOS 用的 FLASH 芯片。

4.6.1 寄存器说明

4.6.1.1 基地址

表 4-14 SPI 基地址

名称	基地址
SPI	0x1FFF_FF00

4.6.1.2 寄存器列表

表 4-15 寄存器列表

地址	寄存器名	说明		
0x00	配置寄存器	配置访问数据空间时产生的读写命令、SCK 分频等信息		
0x14	Flash 容量设置寄存器	设置所连接的 FLASH 容量,每个片选所接容量必须相同		
0x18	写缓冲 flush 寄存器	写 1 将把写缓冲中的数据 flush 到 FLASH		
0x20	命令端口寄存器	通过端口方式访问 SPI 时设置的命令		
0x24	地址端口寄存器	通过端口方式访问 SPI 时设置的地址		
0x28	高位数据寄存器	通过端口方式访问 SPI 时的高 4 字节数据		
0x2C	低位数据寄存器	通过端口方式访问 SPI 时的低 4 字节数据,读写将触发		
	N 上 XX	SPI 总线操作		

4.6.1.2.1 配置寄存器 (0x00)

表 4-16 配置寄存器

位	名称	读写方式	默认 值	说明
[7:6]	cmd_mode	R/W	0x0	设置读写数据空间时所发出的 SPI 命令 •00-发 read(03)和 pp(02); •01-发 4read(13)和 4pp(12); •10-发 fast_read(0b)和 pp(02); •11-发 4fast_read(0c)和 4pp(12);
[5]	addr_mode	R/W	0x0	设置发出 read、fast_read 和 pp 命令时的地址模式

				设置发出 fast_read 和 4fast_read 时是否发 dummy 字节
[4]	dummy	R/W	0x0	•0-不发;
				•1-发;
[2]	www.modo	D/W	0**0	•0-每次写请求直接发编程命令;
[3]	wr_mode	R/W 0x0		•1-写数据先放入缓冲,多次写合并编程;
[2:0]	sck_sel	R/W	0x0	•000-如果定义了 SPEEDSIM_FLASH, sck 为输入时钟 clk 的
				2 分频, 否则为 16 分频;
				•001-sck 为 pclk 的 2 分频;
				•010-sck 为 pclk 的 4 分频;
				•011-sck 为 pclk 的 8 分频;
				•100-sck 为 pclk 的 16 分频;
				•101-sck 为 pclk 的 32 分频;
				•110-sck 为 pclk 的 64 分频;
				•111-sck 为 pclk 的 128 分频。

4.6.1.2.2 容量寄存器 (0x14)

表 4-17 容量寄存器

位	名称	读写方式	默认值	说明
				•0–16MB
				•1–32MB
				•2–64MB
[2,0]	flesh samesity	R/W	0x0	•3–128MB
[2:0]	flash_capacity	R/W	UXU	•4–256MB
				•5–512MB
	7			•6–1GB
				•7-非法值

4.6.1.2.3 写缓冲寄存器 (0x18)

表 4-18 写缓冲寄存器

	位	名称	读写方式	默认值	说明
Ī	[0]	flush	R/W	0x0	写 1 将产生 flush 操作

4.6.1.2.4 命令端口寄存器 (0x20)

表 4-19 命令端口寄存器

位	名称	读写方式	默认值	说明
[17:16]	flash_sel	R/W	0x0	选择要操作的 flash
[15:8]	command	R/W	0x0	要发出的 SPI 命令
[7]	reserved	R/W	0x0	保留
				是否带地址
[6]	addr_mode0	R/W	0x0	•0-不带地址
				•1-带地址
				地址模式
[5]	addr_mode1	R/W	0x0	•0-3 字节地址
				•1-4 字节地址
				是否发 dummy 字节
[4]	dummy	R/W	0x0	•0-不发
				•1-发
[3:0]	R/W_num	R/W	0x0	读写字节数目,有效值为0,1,2,4,8

4.6.1.2.5 地址端口寄存器 (0x24)

表 4-20 地址端口寄存器

位	名称	读写方式	默认 值	说明
[31:0]	addr	R/W	0x0	地址

4.6.1.2.6 高位寄存器 (0x28)

表 4-21 高位寄存器

位	名称	读写方式	默认 值	说明
[31:0]	data	R/W	0x0	高4字节数据

4.6.1.2.7 低位寄存器 (0x2C)

表 4-22 低位寄存器

位	名称	读写方式	默认 值	说明
[31:0]	data	R/W	0x0	低4字节数据

4.7 UART 接口

UART (Universal Asynchronous Receiver/Transmitter),通用异步接收/发送装置,定义了一种并行数据与串行数据进行转换的协议。芯片中包含 1 个 9 线接口 UART0 和 1 个 3 线制接口 UART1,兼容 16550 标准。

4.7.1 寄存器说明

4.7.1.1 基地址

表 4-23 UART 基地址

名称	基地址	
UART0	0x2800_0000	
UART1	0x2800_1000	

4.7.1.2 寄存器列表

表 4-24 UART 寄存器说明

偏移地址	名称	读写方式	默认值	说明
000	DDD	D.O.	00	接收缓存寄存器
0x00	RBR	RO	0x0	LCR[7] bit = 0
	THD	WO	00	发送保持寄存器
	THR	WO	0x0	LCR[7] bit = 0
	DLL	R/W 0x0	0x0	波特率除数低位字节
	DLL	R/W	UXU	LCR[7] bit = 1
0x04	DLH	R/W 0x0	0x0	波特率除数高位字节
0x04	DLN	K/ W	UXU	LCR[7] bit = 1
	IER	R/W	0x0	中断使能寄存器
	IEK	K/ W	UXU	LCR[7] bit = 0
0x08	IIR	RO	0x01	中断识别寄存器
	FCR	WO	0x0	先进先出控制寄存器
0x0C	LCR	R/W	0x0	行控制寄存器

0x14	LSR	RO	0x60	行状态寄存器
0x7C	USR	RO	0x6	串口状态寄存器

4.7.1.2.1 RBR(0x00)

表 4-25 RBR

位	名称	读写方式	默认值	说明
[31:8]	保留	RO	0x0	保留
[7]	Receive Buffer Register	RO	0x0	UART 模式下串口接收端的数据buffer。当 Line Status Register(LCR)数据就绪位(DR)被设置之后该寄存器上的数据才有效。 在 non-FIFO(FIFO_MODE=NONE)模式或者 FIFOs 被禁用(FCR[0]设置为0)的情况下,RBR中的数据必须在下个数据到来之前被读取,否则将被覆盖,从而导致 over-run 错误。 在 FIFO(FIFO_MODE!=NONE)模式或者 FIFOs 可用(FCR[0]设置为1)的情况下,该寄存器会从头开始访问接收FIFO,如果接收 FIFO 满并且下一个数据到达之前该寄存器没有被读取,FIFO里的数据会被保留,但是任何准备进来的数据将丢失,并导致 over-run 错误。

4.7.1.2.2 THR(0x00)

表 4-26 THR

位	名称	读写方式	默认值	说明
[31:8]	保留	R/W	0x0	保留
[7]	Transmit	WO	0x0	UART 模式串口输出端的数据发送 (sir_out_n)。只有当 THR Empty

Holding		(THRE)位(LSR[5])被设置之后数据才
Troiding		可以被写入。
Register		在 non-FIFO 模式或者 FIFOs 禁用
		(FCR[0]=0) 并且 THRE 己被设置的情况
		下,向 THR 写入一个字符会清除 THRE,
		在 THRE 被重新设置之前任何向 THR 的写
		入都会导致 THR 数据被覆盖。
		在 FIFO 模式或者 FIFOs 可用(FCR[0]=1)
		并且 THRE 已被设置的情况下,在 FIFO 满
		之前可以向 THR 写入 X 个字符。X
		(default=16) 取决于你所配置的 FIFO
		Depth 的值。当 FIFO 满之后,任何写入都
		无效。

4.7.1.2.3 DLH(0x04)

表 4-27 DLH

位	名称	读写方式	默认值	说明
[31:8]	保留	R/W	0x0	保留
[7]	Divisor Latch (High)	R/W	0x0	16 位数据的高 8 位,用于存储 UART 波特率除数。如果 UART_16550_COMPATIBLE == No,只有在 DLAB(LCR[7])位设置和 UART 没有占用(USR[0]为 0)的时候这个寄存才能被控制器访问;其他情况,只有在 DLAB(LCR[7])被设置,才能访问。输出波特率等于串口时钟(pclk 为一个时钟,sclk 为两个时钟(CLOCK_MODE=ENABLE))频率除以 16 倍的波特率除数,如下:波特率=系统时钟/16*波特率除数。 注意:除数暂存器(DLL 和 DHL)设置为0,会禁用波特率时钟,没有串行通信。此外,一旦设置了 DLH,在传输和接收数据之前应该至少等待 8 个最慢的 DW_apb_uart 时

Ī			钟周期.
			N 1 1 1 291 0

4.7.1.2.4 DLL(0x00)

表 4-28 DLL

[31:8] 保留 R/W 0x0 保留	
Divisor	E=No, UART 没 F存才能被 DLAB 输出波特 ph, sclk 为 ABLE)) E: 波特率 L) 设置为 通信。此

4.7.1.2.5 IER(0x04)

表 4-29 IER

位	名称	读写方式	默认值	说明
[31:8]	保留	RO	0x0	保留
				只有当 THRE_MODE_USER == Enabled 时,可
				编程 THRE 中断模式才能开启并被写入。该位
[7]	PTIME	R/W	0x0	总是可读。用来启用/禁用中断的产生。
				•0-禁用
				•1-启用

[6:4]	保留	RO	0x0	
				Modem 状态中断标识位。这位用来启用/禁用
				Modem 状态中断的产生。这个中断优先级为
[3]	EDSSI	R/W	0x0	4.
				•0—禁用
				•1-启用
				Receiver Line 状态中断标识位。这位用来启用/
				禁用 Receiver Line 状态中断的产生。该中断优
[2]	ELSI	R/W	0x0	先级最高。
				•0—禁用
				•1-启用
		R/W		Transmit Holding Register Empty Interrupt 标识
	ETBEI		0x0	位。这位用来启用/禁用 Transmitter Holding
[1]				Register Empty Interrupt 的产生。该中断的优先
[1]	EIDEI	IC/ VV		级为3。
				•0-禁用
				•1-启用
				接收数据可用中断标识位。这位用来启用/禁用
				接受数据可用中断和数据超时中断(在 FIFO 模
[0]	ERBFI	R/W	0x0	式和 FIFO 打开)的产生。该中断优先级为 2
				•0-禁用
				•1-启用

4.7.1.2.6 IIR(0x08)

表 4-30 IIR

位	名称	读写方式	默认值	说明
[31:8]	保留	RO	0x0	保留
[7:6]	FIFOs Enabled (or FIFOSE)	RO	0x0	FIFOs 的启用。这个用来显示 FIFOs 为 启用还是禁用。 •0—禁用 •1—启用
[5:4]	保留	N/A	0x0	保留
[3:0]	Interrupt ID (or IID)	RO	0x1	中断 ID。这位用来显示等待执行的最高 优先级中断,可以是以下类型中的一

		↑ :
		•0000–modem status
		•0001–no interrupt pending
		•0010-THR empty
		•0100–received data available
		•0110–receiver line status
		•0111-busy detect
		•1100–character timeout
		bit[3]表示只有 FIFOs 可用并且用于辨别
		一个 Character Timeout condition
		interrupt 时这个中断才起作用。

4.7.1.2.7 LCR(0x0C)

表 4-31 LCR

位	名称	读写方式	默认值	说明
[31:8]	保留	RO	0x0	保留
				除数锁存访问位。如果
				UART_16550_COMPATIBLE==NO,则只有
				当 UART 空闲(USR[0]等于 0)的时候可
[7]	DLAD	R/W	00	写, 否则总是可写, 可读。
[7]	DLAB	R/W	0x0	该位被用来使能除数锁存器(DLL 和
				DLH)的读和写,从而设置 UART 的波特
				率。该位在初始化波特率之后必须被清除以
				用来访问其他寄存器。
		<i>y</i>		Break 控制位。该位用来产生一个发送到接
				收设备的 break 状态。如果设置成 1,串行
				输出被强制成 spacing(logic 0)状态。如
			0.0	果不在 Loopback 模式(取决于 MCR[4]),
[6]	Break (or BC)	R/W		sout 信号将被强制成低电平直到 Break 位被
[O]	Dieak (of DC)	K/ W	0x0	清除。如果 SIR_MODE==Enable 并且为活
				动状态(MCR[6]设置成 1),sir_out_n 信号
				持续发送脉冲。如果在 Loopback 模式下,
				break 状态对于接收端来说是内部 loop back
				并且 sir_out_n 线强制成低。

[5]	Stick Parity (保留)	RO	0x0	保留
[4]	EPS	R/W	0x0	偶校验选择位。如果 UART_16550_COMPATIBLE==NO,则只有 当 UART 空闲的时候可写,否则一直可 写,可读。 当校验使能的时候 (PEN 设置成 1),此位被 用来选择奇还是偶校验。如果该位被设置成 1,一个 logic 1s 偶数被发送并检查,如果设置成 0,一个 logic 1s 奇数被发送并检查。
[3]	PEN	R/W	0x0	校验使能位。如果 UART_16550_COMPATIBLE==NO,则只有 当 UART 空闲的时候可写,否则一直可 写、可读。 在发送串行字符时该位被用来启用或者禁用 产生奇偶校验,在接收串行字符时该位被用 来启用或者禁用奇偶检查。
[2]	STOP	R/W	0x0	停止位个数选择位。如果 UART_16550_COMPATIBLE==NO,则只有 当 UART 空闲的时候可写,否则一直可 写,可读。 该位用来在外设发送和接收数据的时候选择 每个字符的停止位个数。如果设置成 0,在 串行数据中发送一个停止位。如果设置成 1,并且数据位设置成 5(LCR[1:0]设置成 0),发送 1.5 个的停止位。否则发送两个停止位。注意不管选择了多少个停止位,接收端只检测第一个停止位。 •0-1 stop bit •1-1.5 停止位当 DLS(LCR[1:0]等于 0),否则 2 停止位注意:由于在传输一些配置和波特时钟除数值相关的字符中可能被插入一些空闲时间,所以 DW_apd_uart 停止位间隔可能会变长。
[1:0]	DLS (or CLS,	R/W	0x0	数据长度选择位。如果

as used in		UART_16550_COMPATIBLE==NO,则只有
legacy)		当 UART 空闲的时候可写,否则一直可
		写,可读。
		该位被用来选择外设发送和接收时每个字符
		的数据位个数。可供选择的个数范围如下:
		•00–5 bits
		•01–6 bits
		•10–7 bits
		•11–8 bits

4.7.1.2.8 FCR (0x08)

表 4-32 FCR

位	名称	读写方式	默认值	说明
[31:8]	保留	R/W	0x0	保留
[7:6]	RCVR Trigger (or RT)	wo	0x0	RCVR 触发位。被用于选择数据有效的中断产生时接收 FIFO 触发标准。在使用自动流控模式,当 rts_n 信号被失效时,它是确定的。当dma_rx_req_n 信号被声明在确定的模式操作时FIFO 通常是确定的。支持的触发方式如下: •00—1 character in the FIFO •01—FIFO ½ full •11—FIFO 2 less than full
[5:4]	TX Empty Trigger (or TET)	wo	0x0	TX 空触发,当 THRE_MODE_USER == Disabled,写操作无效。当该模式有效时,THRE 中断产生时被用于选通 TX 的临界值。当 dma_rx_req_n 信号被声明在确定的模式操作时它通常是确定的支持的触发方式如下: •00-FIFO empty •01-2 characters in the FIFO •10-FIFO ½ full
[3]	DMA Mode	WO	0x0	DMA 模式。在附加的 DMA handshaking 信号

	(or DMAM)			没有选择情况下, DMA 信号发送模式用于决
				定 dma_tx_req_n 和 dma_rx_req_n 输出信号。
				•0-模式 0
				•1-模式 1
				XMIT FIFO 复位。复位这个控制器,FIFO 的
	VMIT FIEO			发送和接收为空。当附加 DMA handshaking 信
[2]	[2] Reset (or XFIFOR)	WO	00	号被选通(DMA_EXTRA == YES),DMA TX
[2]		WO	0x0	请求和单独的信号会失效。
				注意:该位会自动清零。不需要进行清零操
				作。
				RCVR FIFO 复位。复位这个控制器,FIFO 的
	RCVR FIFO	WO		发送和接收为空。当附加 DMA handshaking 信
F13			0x0	号被选通(DMA_EXTRA == YES),DMA RX
[1]	Reset (or			请求和单独的信号会失效。
	RFIFOR)			注意:该位会自动清零。不需要进行清零操
				作。
	PIPO P. 11	WO		FIFO 使能位。该位使能或禁用发送(XMIT)和
[0]	FIFO Enable		0x0	接收(RCVR) FIFO。当该位被改变,XMIT 和
	(or FIFOE)	1		RCVR FIFO 复位。

4.7.1.2.9 LSR(0X14)

表 4-33 LSR

₽÷	対称	读写方式	默认	说明
位	名称	以与 刀式	值	
[31:8]	Reserved	RO	0x0	保留
				接收 FIFO 错误位。
				仅当 FFIFO_MODE!=NONE 并且 FIFO 使能时有
				效(FCR [0]设置为 1)。
			该位用来指示在 FIFO 中至少有一个奇偶错误或	
[7]	RFE	RO	0x0	帧错误或数据终止发送。
			•0–RX FIFO 没有错误	
				•1–RX FIFO 错误
				当 LSR 被读取,并且错误在接收 FIFO 顶端,而
				且 FIFO 里没有其他错误时被清除。

				发送器空位。
				仅当 FFIFO MODE!=NONE 并且 FIFO 使能时有
				效(FCR [0]设置为 1)。
				只要发送移位寄存器和 FIFO 都是空,该位就置
[6]	TEMT	RO	0x1	大女及这份位司行福和TIFO 都定工,该位就直 位
				如果在非 FIFO 模式或 FIFO 禁用,只要发送器保
				対来任非 FIFO 模式或 FIFO 崇用, 只要及込命体 持寄存器和发送移位寄存器都为空,该位被设
				置。
				发送保持寄存器空标志位。
				如果 THRE_MODE_USER == Disabled 或禁用
				THRE 模式(不论 FIFO 的是否正在执行还是与
				否启用),该位表明 THR 或发送 FIFO 为空。不
				论数据从 THR 或 TX FIFO 写到发送移位寄存器
[5]	THRE	RO	0x1	还是没有数据写到 THR 或 TX FIFO,该位都会
				被置位。如果启用了THRE中断,这也会突然引
				发 THRE 中断。如果 THRE_MODE_USER ==
				Enabled 并且 FIFO_MODE!=NONE,而且所有模
				式都处于激活状态(IER[7]=1 并且 FCR[0]=
				1),此时该位将指示发送 FIFO 是否满(阈值由
				FCR [4]阈值设置),而不是控制 THRE 中断。
				发送中断位。
				该位用于指示串口输入数据时发生了中断,
				如果在 UART 模式(SIR_MODE == Disabled),
				每当输入的逻辑 0 的保持时间超过开始时间 +
				数据位 + 停止位和奇偶校验的总和时,该位置
				位。
				如果红外模式(SIR_MODE == Enabled),每当输
[4]	BI	RO	0x0	入的逻辑 0 的保持时间超过开始时间 + 数据位
				+ 停止位和奇偶校验的总和时,该位置位。
				当串口仅接收到一个字符,并且该字符内所有位
				全部为0时,该位置位。被中断的数据到达FIFO
				的顶端时,该位被置位。
				读 LSR 将清除 BI 位。
				在 non-FIFO 模式下,BI 位一直置位,直到 LSD
				被读取。

				帧错误位。
				接收的数据没有检测到一个有效的 STOP 位时将
				会发生帧错误。在 FIFO 模式中,由于帧错误与
				接收字符有关,当帧错误的字符到达 FIFO 的顶
				部时才设置该位,当一个帧错误发生时,
[3]	FE	RO	0x0	DW_apb_uart 尝试重新同步。他会假设错误是由
				于下一个字符的开始位错误造成的,然后继续接
				收其他位。
				特别注意:如果 break interrupt(LSR[4])发生该位
				将被置位。
				•0无帧错误
				•1-帧错误
				读 LSR 将清除 FE 位。
				当 LCR[3]=1 时,此时指示在接收器中的奇偶校
				验错误的发生。在 FIFO 模式中,由于奇偶错误
				与接收字符有关,当奇偶性错误的字符到达 FIFO
				的顶部时才设置该位,
[2]	PE	RO	0x0	特别注意:如果 break interrupt(LSR[4])发生该位
				将被置位。
				•0-无奇偶校验错误
				•1-奇偶校验错误
				读 LSR 将清除 PE 位。
				溢出错误位。
				这是用来指示溢出错误的发生。如果在读取旧的
				数据前接收到一个新数据字符将发生这种情况。
				在 non-FIFO 模式下,当之前的字符没有从 RBR
				中读出,此时一个新的字符到达接收器时 OE 位
				被置位。发生这种情况时,RBR 的数据被覆盖。
[1]	OE	RO	0x0	在 FIFO 模式中,当 FIFO 已满且新字符到达接收
			器时溢出错误也会发生。此时在 FIFO 中的数据	
				被保留,而在接收移位寄存器中的数据将会丢
				失。
				• 0无溢出错误。
				●1 -溢出错误
				· m 口 亿 火

				读 LSR 将清除 OE 位。
				数据就绪位。
				这是用来指示在 RBR 或者接收 FIFO 中至少已接
				收一个字符
F01	[0] DR RO	D.O.	0.0	•0-无数据就绪
[0]		RO	0x0	•1-数据就绪
				在 non-FIFO 模式下,读取 RBR 时该位被清除,
				或在 FIFO 模式下,接收 FIFO 为空时该位被清
				除。

4.7.1.2.10 USR(0x7C)

表 4-34 USR

A Tr	位名称。读写方式		默认	说明
7 <u>1</u> 1.	石你	以 与刀式	值	<i>近·切</i>
[31:5]	保留	RO	0x0	保留
				指示接收 FIFO 满。该位只有当 FIFO_STAT== YES
	RFF	RO		时有效。这是用来指示该接收 FIFO 全满。
[4]			0x0	•0-接收 FIFO 未满
				•1–接收 FIFO 满
				当 RX FIFO 未满该位被清零。
				指示接收 FIFO 不为空。该位只有当 FIFO_STAT==
[3]	RFN E	RO	0x0	YES 时有效。这是用来指示接收 FIFO 包含一个或
			3110	多个条目。

				•0-接收 FIFO 为空
				•1-接收 FIFO 不为空
				当 RX FIFO 为空时该位被清零。
				指示发送 FIFO 空。该位只有当 FIFO_STAT== YES
				有效。这是用来指示发送 FIFO 完全是空的。
[2]	TFE	RO	0x1	•0-发送 FIFO 不为空
				•1-发送 FIFO 空
				当 TX FIFO 不再是空,该位被清零。
				指示发送 FIFO 未满。该位只有当 FIFO_STAT==
	TENI			YES 有效。这是用来指示在未满发送 FIFO。
[1]	TFN	RO	0x1	•0-发送 FIFO 满
	F			•1-发送 FIFO 未满
				当 TX FIFO 满时该位被清零。
				指示 UART 忙。
				该位只有当 UART_16550_COMPATIBLE == NO 时
		RO		有效,指示串口正在进行传输;该位清0时表明
				DW_apb_uart 空闲或处于 idle 状态。
				•0-DW_apb_uart 空闲或处于 idle 状态。
				•1-DW_apb_uart 忙(主动传输数据)。
				该位将在以下任意条件发生时设置为1(忙):
				1.正在进行数据传输。
				2.当不使用 FIFO 的访问模式和波特率除数为非零
	BUS Y		0x0	时,并且当前传输数据在 THR 中。
				3.接口正在进行数据接收。
[0]				4.当 RBR 正在接收数据时,FIFO 访问模式不允许
				使用。
				注意:尽管其他设备发送了一个新的字符,串口的
				busy 位却处于清除状态,也就是说,虽然一个新字
				符的 start 位刚到达 DW_apb_uart,但是在 THR 和
				RBR 却没有数据,此时串口的 busy 位也处于清除
				状态。因为判定 start 位有效是在该位的中间,而不
				 是起始位置,具体何时有效要根据波特率的分频设
				 置。如果第二个系统时钟已经执行
				(CLOCK_MODE ==Enabled),对该位的判定也会
				 被较慢时钟推迟的几个周期。
		<u> </u>		<u> </u>

4.8 I2C接口

I2C(Inter-Integrated Circuit)总线分别包含一条串行数据线 SDA 与一条串行时钟线 SCL。I2C 用于连接微控制器及其外围设备,是微电子通信控制领域广泛采用的一种总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。芯片包含 2 个 I2C 接口,分别为 I2C 0 和 I2C 1。

4.8.1 寄存器说明

4.8.1.1 基地址

 名称
 基地址

 I2C 0
 0x2800_2000

 I2C 1
 0x2800 3000

表 4-35 I2C 基地址

4.8.1.2 寄存器列表

表 4-36 I2C 寄存器列表

偏移地址	名字	读写方式	默认值	说明	
0x00	IC_CON	R/W	0x7F	I2C 控制寄存器	
0x04	IC_TAR	R/W	0x1055	I2C 目的地址寄存器	
0x08	IC_SAR	R/W	0x55	I2C 从设备地址寄存器	
0x10	IC_DATA_	R/W	0x0	I2C 接收/发送数据 buff 和命令寄存	
	CMD			器	
0x14	IC_SS_SC	R/W	0x190	I2C 标准速率时钟计数器,高 32 位	
	L_HCNT				
0x18	IC_SS_SC	R/W	0x1D6	 I2C 标准速率时钟计数器,低 32 位	
	L_LCNT			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0x1C	IC_FS_SC	R/W	0x3C	I2C 快速速率时钟计数器,高 32 位	
OATC	L_HCNT	10 **	OASC	120 八龙龙平町竹竹 奴部,同 52 位	
0x20	IC_FS_SC	R/W	0x82	I2C 快速速率时钟计数器,低 32 位	
UX20	L_LCNT	IV/ W	UX82	120	
0x24	IC_HS_SC	R/W	0x6	I2C 高速速率时钟计数器,高 32 位	
0324	L_HCNT	10/ 44	UAU	120 同处处平时打打数值,同 32 世	

0x28	IC_HS_SC L_LCNT	R/W	0x10	I2C 高速速率时钟计数器,低 32 位
0x30	IC_INTR_ MASK	R/W	0x8FF	I2C 中断 mask 寄存器
0x34	IC_RAW_I NTR_STA T	RO	0x0	I2C 原始中断状态寄存器
0x38	IC_RX_TL	R/W	0x0	I2C 接收 FIFO 门限寄存器
0x3C	IC_TX_TL	R/W	0x0	I2C 发送 FIFO 门限寄存器
0x6C	IC_ENAB LE	R/W	0x0	I2C 使能寄存器
0x70	IC_STATU S	RO	0x6	I2C 状态寄存器

4.8.1.2.1 IC_CON(0x00)

表 4-37 IC_CON(0x00)寄存器说明

位	名称	读写方式	默认值	说明
[15:7]	-	-	-	-
				此位是 I2C Slave 功能是否关闭的控制位。即
				在使用 I2C 功能时,通过配置此参数控制 I2C
				Slave 功能是打开还是关闭。
			*	软件驱动可以在系统复位后配置此参数,即通
	IC_SLAV		IC_SLAVE_	过软件配置 Slave 的使能或关闭并不是必需
[6]	E_DISAB	R/W	DISABLE 配	的。在默认状态下和复位状态下 I2C 的 Slave
	LE		置参数	功能均是使能的。如果此位设置为 1,则 I2C
		/		控制器只能作为 Master 使用,不能响应反向
				Slave 的请求。
				•0 –使能 I2C Slave 功能
				•1-关闭 I2C Slave 功能
				此位设置作为 I2C Master 使用时是否支持
	IC DECT		IC_RESTAR	restart 功能。某些 I2C Slave 设备不能处理
[5]	IC_REST ART EN	R/W	T_EN 配置	Restart 信号,但多数 I2C Slave 设备均能处理
	AKI_EN		参数	Restart 信号。
				•0不支持 Restart

[4]	C_10BIT ADDR_M ASTER or C_10BIT ADDR_M ASTER_r d_only	R/W	IC_10BITAD DR_MASTE R 配置参数	•1-支持 Restart 当设备不支持 RESTART 功能时,I2C 的 Master 控制器支持以下功能: •不发送起始字节 •不支持 Hs 工作模式 •不能进行 10 位地址读操作在不支持 Restart 功能时进行以上操作,IC_RAW_INTR_STAT 寄存器中的 TX_BART标志会被置起。 当 I2C_DYNAMIC_TAR_UPDATE 参数为 0("No")时,此位为IC_10BITADDR_MASTER,控制其作为 I2C Master 时使用 7 位地址模式还是 10 位地址模式进行通信。当 I2C_DYNAMIC_TAR_UPDATE 参数为 1("Yes")时,此位为IC_10BITADDR_MASTER_rd_only,读写方式为只读状态,从此处读取的值为 IC_TAR 的第12 位所设置的值,其含义为:
[3]	IC_10BIT ADDR_S LAVE	R/W	IC_10BITAD DR_SLAVE 配置参数	•1-10 位地址模式 当工作在 slave 模式时,此位用来选择 I2C 控制器响应 7 位地址访问模式还是响应 10 位地址访问请求模式 •0-7 位地址模式。 此模式下,对于 10 位地址访问请求,I2C 控制器忽略请求,不响应;对于 7 位地址访问请求,I2C 控制器将请求中的 7 位地址与 IC_SAR 寄存器中的 7 位地址值进行比对,若两者一致则响应,若不一致则不响应。 •1-10 位地址模式。 此模式下,I2C 控制器只响应与 IC_SAR 寄存器中的 10 位地址相匹配的 10 位地址访问请求。
[2:1]	SPEED	R/W	IC_MAX_SP	这个参数用来设定 I2C 控制器工作在 Master

			EED_MODE	模式时的速率。此参数值的范围为1~
			配置参数	IC_MAX_SPEED_MODE 。如果软件设定的
				值不在 1~ IC_MAX_SPEED_MODE 范围
				内,硬件会将其更改为
				IC_MAX_SPEED_MODE ,以起到保护作
				用。
				•1-标准模式 (0 to 100 Kbit/s)
				•2-快速模式 (≤400 Kbit/s)
				•3–高速模式 (≤ 3.4 Mbit/s)
	MACTED		IC_MASTER	此位是 I2C Master 的使能位。
[0]	[0] MASTER R/W MODE	R/W	_MODE 配置	•0-关闭 master 功能
		参数	•1–使能 master 功能	

4.8.1.2.2 IC_TAR(0x04)

表 4-38 IC_TAR(0x04)寄存器说明

位	名称	读写方式	默认值	说明
[15:13]	-	-	/-	-
				此位用来选择工作在 I2C Master 时使用 7 位地址模
	IC 10DIT		IC 10DITADDD	式还是 10 位地址模式进行通信。
[12]	IC_10BIT	D/W	IC_10BITADDR	•0-7 位地址模式
[12]	ADDR_M	R/W	_MASTER 配置	•1-10 位地址模式
	ASTER		参数	声明:此位只有在 I2C_DYNAMIC_TAR_UPDATE
				为"Yes"时才有效。
			/	此位用来选择 I2C 通信使用广播呼叫地址格式还是
	11] SPECIAL R/W			使用 START BYTE 格式
[11]		0x0	•0–使用 IC_TAR 地址格式,忽略 GC_OR_START 设	
				置
				•1-使用 GC_OR_START 设定的格式
				如果位 11 (SPECIAL)为 1,此位设定 DW_apb_i2c
				使用广播呼叫地址格式还是 START BYTE 格式。
[10]	GC_OR_S	R/W	0x0	•0-使用广播呼叫地址格式。
	TART	R/W	UXU	此模式下只能进行写操作。如果尝试在此模式下进
				行读操作,则 IC_RAW_INTR_STAT 寄存器中的第
				6 位(TX_ABRT)将会被置位。 如果 SPECIAL 位

				一直为 1, I2C 控制器则会一直工作在这种模式下。
				•1-START BYTE 格式
			IC_DEFAULT_T	此处用来存放 Master 通信的目的地址。使用广播呼
[9:0]	IC_TAR	R/W	AR_SLAVE_AD	叫地址格式时此参数可以忽略,使用 START BYTE
			DR 配置参数	格式时只需 CPU 向此处进行一次写操作。

4.8.1.2.3 IC_SAR(0x08)

表 4-39 IC_SAR(0x08)寄存器说明

位	名称	读写方式	默认值	说明
[15:10]	-	-	-	-
[9:0]	IC_SAR	R/W	IC_DEFAULT_ SLAVE_ADDR 配置参数	IC_SAR 存放 I2C 工作在 Slave 模式下的 Slave 地址。7 位地址模式下只使用 IC_SAR[6:0]。只有在关闭 I2C 接口功能时(IC_ENABLE=0)才能更新 IC_SAR 的值,在 I2C 接口处于使能状态时不能改变 IC_SAR 的值。

4.8.1.2.4 IC_DATA_CMD(0x10)

表 4-40 IC_DATA_CMD(0x10)寄存器说明

位	名称	读写方式	默认值	说明
[15:11]	-	-		-
				此位设置是否在发送或接收一个字节数据前发起 RESTART, 且只有在 IC_EMPTYFIFO_HOLD_MASTER_EN 为 1 时有效。 •1-如果 IC RESTART EN =1,不管传输方向与上次传输一致
[10]	RESTART	wo	-	还是相反,在发送或接收数据前会发起一个 RESTART; 如果 IC_RESTART_EN =0,则使用 START/Stop 配对模式,每次以
		y		START 作为一次传输的开始,以 Stop 结束一次传输。 •0-如果 IC_RESTART_EN =1,则只有在传输方向与上次发生改变时发起一个 RESTART; 如果 IC_RESTART_EN =0,则使用 START/Stop 配对模式,每次以 START 作为一次传输的开始,以 Stop 结束一次传输。
[9]	STOP	WO	-	此位设置是否在发送或接收到一个字节数据后发起 STOP,且 只有在 IC_EMPTYFIFO_HOLD_MASTER_EN 为 1 时有效。 •1-不管 Tx FIFO 是否为空,在发送或接收数据后都会发起一

				A CTOR 加用T. FIFO 不补充 则太华学式拉斯特尼 当
				个 STOP。如果 Tx FIFO 不为空,则在发送或接收数据后,总
				线的 Master 端会立即通过产生 START 和申请总线仲裁的方式
				开始一次新的通信。
				•0-不管 Tx FIFO 是否为空,在发送或接收数据后都不发起
				STOP。如果 Tx FIFO 不为空,则继续发送或接收当前通信的
				其他数据字节(由 CMD 位决定是发送还是接收);如果 Tx
				FIFO 为空,总线的 Master 端会持续拉低 SCL 信号线并将总
				线挂起,直到 Tx FIFO 中有新的有效值。
				此位是 I2C 控制器工作在 Master 模式时进行读写操作的控制
				位。控制器工作在 Slave 模式时,此位值无效。
			•1-读	
				•0-写
				工作在 Slave 接收模式时不需要考虑 CMD 位的设定。 工作在
				Slave 发送模式时,CMD=0 表示 IC_DATA_CMD 中的数据将
				被发送。
[8]	CMD	WO	0x0	在对 CMD 位进行操作时需要考虑以下情况:无论
				IC RAW INTR STAT 中的 SPECIAL 位(第 11 位)是否被清
				0,在发送广播呼叫地址格式后进行读操作都会导致
				TX ABRT 中断被置位(IC RAW INTR STAT 寄存器中的第
				6 位); 如果在收到 RD REQ 中断后软件置 CMD 位为 1 也同
				样会导致 TX ABRT 中断事件的发生,即 TX ABRT 位被置
				1。
				DAT 中存放用来发送的数据或从 I2C 总线上接收到的数据。在
[7.0]	DAT -	WO	0.0	
[7:0]	DAT	WO	0x0	开始一次读操作时向 DAT 中写入数据将被 DW_apb_i2c 忽略,
				但此时从 DAT 读取的数据则是从 I2C 总线接口接收到的数据。

4.8.1.2.5 IC_SS_SCL_HCNT(0x14)

表 4-41 IC_SS_SCL_HCNT(0X14)寄存器

位	名称	读写方式	默认值	说明	
				该寄存器必须在 I2C 总线传输之前进行设置用	
	10 00 00		IC_SS_SCL_HI	于明确正确的 I/O 时序。该寄存器用于设置标	
[15:0]	IC_SS_SC	R/W	R/W	GH_COUNT	准速率下 SCL 高电平持续时间的计数值。
	L_HCNT			配置参数	该寄存器仅当 I2C 接口在不使能情况下(当
				IC_ENABLE=0 时)可写。其他情况下的写操	

		作无效。
		寄存器最小取值为6,比6小的值无法设置,
		若设置值小于 6,则硬件将寄存器值设置为
		6。当 APB_DATA_WIDTH=8 时,寄存器设置
		的顺序尤为关键,此时,首先应配置计数器的
		低 32 位数据,之后再配置高 32 位。
		当 IC_HC_COUNT_VALUES 为 1 时,该寄存
		器只读。

4.8.1.2.6 IC_SS_SCL_LCNT(0x18)

表 4-42 IC_SS_SCL_LCNT(0X18)寄存器

位	名称	读写方式	默认值	说明
				该寄存器必须在 I2C 总线传输之前进行
				设计,用于明确正确的 I/O 时序。该寄存
				器用于设置标准速率下 SCL 低电平持续
				时间的计数值。
		,		该寄存器仅当 I2C 接口在不使能情况下
				(当 IC_ENABLE=0 时)可写。其他情
	IG gg gg		IC_SS_SCL_	况下的写操作无效。
[15:0]	IC_SS_SC	R/W	LOW_COUN	寄存器最小取值为8,比8小的值无法
	L_LCNT		T 配置参数	设置, 若设置值小于 8, 则硬件将寄存
				器值设置为8。
				当 APB_DATA_WIDTH=8 时,寄存器设
				置的顺序尤为关键,此时,首先应配置
				计数器的低 32 位数据,之后再配置高 32
				位。当IC_HC_COUNT_VALUES为1时,
				该寄存器只读。

4.8.1.2.7 IC_FS_SCL_HCNT(0x1C)

表 4-43 表 IC_FS_SCL_HCNT(0X1C)寄存器

位	名称	读写方式	默认值	说明
F15.0	IC_FS_SC	R/W	IC_FS_SCL_	该寄存器必须在 I2C 总线传输之前进行
[15:0	L_HCNT	IV/ W	HIGH_COU	设计,用于明确正确的 I/O 时序。该寄

	NT	配置参	存器用于设置快速模式下 SCL 高电平
	数		持续时间的计数值。用于发送高速模式
			下的 Mater Code 和 START BYTE 或
			General Call。
			当 IC_MAX_SPEED_MODE=
			standard,此寄存器为只读且返回值为
			全 0。该寄存器仅当 I2C 接口在不使能
			情况下(当 IC_ENABLE=0 时)可写。
			其他情况下的写操作无效。
			寄存器最小取值为6,比6小的值无法
			设置, 若设置值小于6, 则硬件将寄存
			器值设置为6。当
			APB_DATA_WIDTH=8 时,寄存器设置
			的顺序尤为关键,此时,首先应配置计
			数器的低字节(8位)数据,之后再配
			置高字节 (8位)。
			当 IC_HC_COUNT_VALUES 为 1 时,
			该寄存器只读。

4.8.1.2.8 IC_FS_SCL_LCNT(0x20)

表 4-44 IC_FS_SCL_LCNT(0X20)寄存器

位	名称	读写方式	默认值	说明
[15:0]	IC_FS_SC L_LCNT	R/W	IC_FS_SCL_ LOW_COUN T 配置参数	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器用于设置快速模式下 SCL 低电平持续时间的计数值。用于发送高速模式下的 Mater Code 和 START BYTE 或General Call。 当 IC_MAX_SPEED_MODE=standard,此寄存器为只读且返回值为全0。该寄存器仅当 I2C 接口在不使能情况下(当 IC_ENABLE=0 时)可写。其他情况下的写操作无效。寄存器最小取值为 8,比 8 小的值无法

	设置, 若设置值小于 8, 则硬件将寄存
	器值设置为 8。
	当 APB_DATA_WIDTH=8 时,寄存器
	设置的顺序尤为关键,此时,首先应配
	置计数器的低字节(8位)数据,之后
	再配置高 32 位字节 (8 位)。当
	IC_HC_COUNT_VALUES 为 1 时,该
	寄存器只读。

4.8.1.2.9 IC_HS_SCL_HCNT(0x24)

表 4-45 IC_HS_SCL_HCNT(0X24)寄存器

位	名称	读写方式	默认值	说明
[15:0]	IC_HS_S CL_HCN T	读与万式 R/W	IC_HS_SC L_HIGH_C OUNT 配 置参数	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器用于设置高速模式下 SCL 高电平持续时间的计数值。 SCL 高电平时间依赖于总线的负载情况。接 100pF 的负载时,高电平时间为 60ns;接 400pF 的负载时,高电平时间为 120ns。IC_MAX_SPEED_MODE!= high 时,此寄存器为只读且返回值为全 0。该寄存器仅当 I2C 接口在不使能情况下(当 IC_ENABLE=0 时)可写。其他情况下的写操作无效。寄存器最小取值为 6,比 6 小的值无法设置,若设置值小于 6,则硬件将寄存器值设置为 6。当 APB_DATA_WIDTH=8 时,寄存器设置的顺序尤为关键,此时,首先应配置计数器的低字节(8位)数据,之后再配置高字节(8位)。当 IC_HC_COUNT_VALUES 为 1 时,该寄存器只读。

4.8.1.2.10 IC_HS_SCL_LCNT(0x28)

表 4-46 IC_HS_SCL_LCNT(0X28)寄存器

4.8.1.2.11 IC_INTR_MASK(0x30)

表 4-47 IC_INTR_MASK(0X30)寄存器

位	名称	读写方式	默认值	说明
[15:12]	-	-	-	-
[11]	M_GEN_C	R/W	01	M_GEN_CALL 中断事件标志屏蔽控制。置位
	ALL	IV. W	0x1	时,如果对应中断事件发生,不会置位
[10]	M_START	R/W	0x0	IC_INTR_STAT 寄存器中对应的中断标志位

	_DET				
[9]	M_STOP_	R/W	0x0		
	DET				
[8]	M_ACTIVI	R/W	0x0		
	TY				
[7]	M_RX_DO	R/W	0x1		
[,]	NE	10 11	OXI		
[6]	M_TX_AB	R/W	0x1		
[6]	RT	IV/ VV	UXI		
[5]	M_RD_RE	D/W/	0- 1		
[5]	Q	R/W	0x1		
F 4 3	M_TX_EM	D/W	0.1		
[4]	PTY	R/W	0x1		
F2.1	M_TX_OV	D/W	0.1		
[3]	ER	R/W	0x1		
[2]	M_RX_FU	D/W	0.1		
[2]	LL	R/W	0x1		
F13	M_RX_OV	D/W	0.1		
[1]	ER	R/W	0x1		
[0]	M_RX_UN	D/W/	0-:1	7	
[0]	DER	R/W	0x1		

4.8.1.2.12 IC_RAW_INTR_STAT(0x34)

表 4-48 IC_RAW_INTR_STAT(0x34)寄存器说明

位	名称	读写方式	默认值	说明
[15:12]	-	-	-	-
[11]	GEN_CA LL	RO	0x0	只有接收并识别到广播呼叫地址格式时才会被置位。一旦 GEN_CALL 置位,则只有通过关闭 I2C 控制器或 CPU 读取 IC_CLR_GEN_CALL 寄存器中的第 0 位,GEN_CALL 位才能被清 0。I2C 控制器会把接收到的数据存放在 RX 缓冲区中。
[10]	START_D ET	RO	0x0	此位状态表示在 I2C 总线接口上是否产生了 START 或 RESTART。与控制器工作在 Master 模 式还是 Slave 模式无关。

				此位状态表示在 I2C 总线接口上是否产生了
[9]	STOP_DE	RO	0x0	STOP。与控制器工作在 Master 模式还是 Slave 模
[9]	Т	KO	UXU	式无关。
				此位标志 I2C 控制器的活动状态。
				有 4 种方法可以清除 ACTIVITY 标志:
				•关闭 DW_apb_i2c
	ACTIVIT			•读取 IC_CLR_ACTIVITY 寄存器
[8]	Y	RO	0x0	•读取 IC_CLR_INTR 寄存器
	_			•系统复位
				一旦被置位则会一致保持置位,直到通过以上四
				种方式中的一种将其标志清 0。即使在 Idle 状态
				下如果采取清0动作的话也会一直保持置位。
	DV DON			I2C 控制器工作在 Slave 发送模式下,发送完数据
[7]	RX_DON	RO	0x0	的最后一个字节后,在规定时间内没有收到 Master
	E			端的回应(ACK),RX_DONE 将会被置位表示结束。
				该数据位表示 I2C 无法完成传输 FIFO 中存储的
				计划动作。这个情况在 I2C master 和 slave 中都有
[6]	TX_ABR	RO	0x0	可能发生,被认为是传输终止标志。
	T		()	当该数据位为 1 时,IC TX ABRT SOURCE 寄
				读请求标志。当 I2C 控制器工作在 Slave 模式
				下,且有 Master 尝试从 DW apb i2c 中读取数据
				时,RD REQ 被置位。I2C 控制器在处理
				RD REQ 请求期间会将 SCL 保持低电平。
[5]	RD REQ	RO	0x0	RD REQ 是处理器必须响应的中断请求,并在请
	ICD_ICEQ	RO	UAU	求处理完成时把 Master 所要的数据放到
				IC DATA CMD 寄存器中。读取
				IC_CLR_RD_REQ 寄存器的值可以将 RD_REQ
				标志清 0。
				当发送缓冲区小于等于 IC_TX_TL 寄存器中设定
				的门限值时将置位 TX_EMPTY。当缓冲区大于门
[4]	TX_EMP	RO	0x0	限值时,硬件会自动把 TX_EMPTY 清 0。
	TY			IC_ENABLE bit0=0 时,TXFIFO 被刷新复位,
				TXFIFO 可以认为为空,此时 TX_EMPTY 被置为
				1。当总线处于非活动状态时 ic_en=0,

				TX_EMPTY=0。
				在发送过程中,如果发送缓冲区大小达到
				IC_TX_BUFFER_DEPTH 且处理器还在尝试通过
	TV OVE			向 IC_DATA_CMD 中写数据来发起另一个 I2C 命
[3]	TX_OVE R	RO	0x0	令时,TX_OVER 被置位。即使在控制器功能被
	K			关闭的情况下(IC_ENABLE[0]=0) RX_OVER
				状态也会一直保持置位,直到总线进入空闲状
				态。ic_en =0 时,TX_OVER 被清 0。
				当接收缓冲区大于等于 IC_RX_TL 中设定的门限
	RX FUL			值(RX_TL)时,RX_FULL 置位。当缓冲区小于
[2]	L L	RO	0x0	门限值时,硬件会自动把 RX_FULL 清 0。
	L			IC_ENABLE bit0=0 时,RXFIFO 被刷新复位,
				RXFIFO 为空,此时 RX_FULL 被清 0。
				当接收缓冲区大小达到
		RO	0x0	IC_RX_BUFFER_DEPTH,且还继续从外部接收
				数据时,RX_OVER 置位。TX_OVER 事件会被
[1]	RX_OVE			I2C 控制器响应,且在缓冲区满后接收到的所有
[1]	R	KO		数据均被丢弃。即使在控制器功能被关闭的情况
				下(IC_ENABLE[0]=0)RX_OVER 状态也会一直
				保持置位,直到总线进入空闲状态。ic_en=0,
				RX_OVER 被清 0。
				处理器通过访问 IC_DATA_CMD 寄存器获取接收
[0]				缓冲区的数据时,若接收缓冲区为空,
	RX_UND	P.O.	0x0	RX_UNDER 被置位。即使在控制器功能被关闭
	ER	RO	UXU	的情况下(IC_ENABLE[0]=0)RX_UNDER 状态
				也会一直保持置位,直到总线进入空闲状态。
				ic_en =0 时,RX_UNDER 被清 0。

4.8.1.2.13 IC_RX_TL(0x38)

表 4-49 IC_RX_TL(0x38)寄存器

位	名称	读写方式	默认值	说明
[15:8]	-	-	-	-
[7.0]	7:0] RX_TL R/W	DV TI D/W	IC_RX_TL	接收缓冲区满中断(RX_FULL)触发门
[7:0]		K/W	配置参数	限控制。有效范围 0~255, 但最大值不

	能超出缓冲区的深度。 如果设定值超出
	缓冲区的最大深度,其实际设置的有效大
	小为缓冲区的最大深度值。0表示接收缓
	冲区大于等于1时触发中断,255表示接
	收缓冲区大于等于 256 时触发中断。

4.8.1.2.14 IC_TX_TL(0x3C)

表 4-50 IC_TX_TL(0X3C)寄存器

位	名称	读写方式	默认值	说明
[15:8]	-	-	-	-
[7:0]	TX_TL	R/W	IC_TX_TL 配置参数	发送缓冲区满中断(TX_EMPTY)触发门限控制。有效范围 0~255,但最大值不能超出缓冲区的深度。 如果设定值超出缓冲区的最大深度,其实际设置的有效大小为缓冲区的最大深度值。0表示发送缓冲区小于等于 0 时触发中断,255表示
			发送缓冲区小于等于 255 时触发中断。	

4.8.1.2.15 IC_ENABLE(0x6C)

表 4-51 IC_ENABLE(0X6C)寄存器

位	名称	读写方式	默认	说明
			值	
[15:1]	-/	-	-	-
				I2C 控制器使能或关闭控制位。
				•0-关闭 I2C 控制器功能
				•1-使能 I2C 控制器功能
				以下现象会在 I2C 控制器功能关闭时出现:
[0]		BLE R/W 0x0	0x0	•TXFIFO 和 RXFIFO 被刷新
[0]	ENABLE			•IC_INTR_STAT 寄存器中的状态保持不变。
				在控制器发送数据过程中关闭 I2C 控制器功
				能,则在当前发送操作完成后,清空发送缓冲
				区中的内容。
				在控制器接收数据过程中关闭 I2C 控制器功

		能,通信将在接收完当前字节后停止,且不响
		应使用 asynchronous pclk and ic_clk 的系统
		(IC_CLK_TYPE=1)。在使能或关闭控制器时
		有 2 个 ic_clk 的延迟。

4.8.1.2.16 IC_STATUS(0x70)

表 4-52 IC_STATUS(0X70)寄存器

位	名称	读写方式	默认值	说明
[31:7]	-	-	-	-
				Slave FSM 活动状态标志。Slave FSM(Slave
				Finite State Machine 不在 Idle 状态时被置位
[6]	SLV_ACTI	RO	0x0	•0-Slave FSM 处于 Idle 状态,此时 I2C 控制
[6]	VITY	RO	UXU	器的 Slave 功能处于非活动状态。
				•1–Slave FSM 处于非 Idle 状态,此时 I2C 控
				制器的 Slave 功能处于活动状态。
				Master FSM 活动状态标志。Master
				FSM(Master Finite State Machine) 处于非 Idle
	MCT ACTI			状态时被置位。
[5]	MST_ACTI	RO	0x0	•0-Master FSM 处于 Idle 状态,此时 I2C 控制
	VITY		>	器的 Master 功能处于非活动状态
				•1-Master FSM 处于非 Idle 状态, 此时 I2C 控
				制器的 Master 功能处于活动状态。
	[4] RFF RO		0x0	接收 FIFO 全满标志。当接收 FIFO 全满时置
F41		RO		位; FIFO 中有一个或一个以上为空时 0。
[4]				•0–接收 FIFO 未满
				•1-s 接收 FIFO 全满
				接收 FIFO 不为空标志。当接收 FIFO 不为空
[2]	DENIE	D.O.		时置位,为空时清 0。
[3]	RFNE	RO	0x0	•0—接收 FIFO 为空
				•1–接收 FIFO 不为空
				发送 FIFO 全空标志。发送 FIFO 全空时置
[2]	TFE	RO	0x1	位;发送 FIFO 有一个或一个以上不为空的
[2]				值时清0。此标志的产生不伴随有中断发
				生。

				•0-发送 FIFO 不为空
				•1-发送 FIFO 为空
				发送 FIFO 未满标志。发送 FIFO 中有一个或
				一个以上位置为空时置位;发送 FIFO 满时
[1]	TFNF	RO	0x1	清 0。
				•0-发送 FIFO 已满
				•1-发送 FIFO 未满
[0]	ACTIVITY	RO	0x0	I2C 控制器活动状态标志

4.9 GPIO 接口

芯片包含了 $32 \land GPIO$ 端口,分成 44,分别是 GPIOA[0:7], GPIOB[0:7], GPIOC[0:7], GPIOD[0:7]。 其中有部分 GPIO 端口是复用的,详细复用情况见表 4-53。如果要选择 GPIO 功能,设置 $REG_CRU_SEL_GPIO(0x28100C00)$ 寄存器的值为 0x0。GPIO 端口可通过软件分别配置成输入或输出。

4.9.1 GPIO 复用说明

4.9.1.1 GPIO 复用寄存器地址

表 4-53 GPIO 复用寄存器地址

名称	基地址
GPIO 复用控制寄存器	0x2810_0C00

4.9.1.2 GPIO 复用寄存器描述

表 4-54 GPIO 复用寄存器描述 GPIO 复用寄存器描述

位	名称	读写方式	默认值	说明
[5:0]	GPIO 复用控制 位	R/W	0x10	每一位控制一组 GPIO 端口的复用: [0]位控制 cru_sel_uart_func, 1 选择此功能, 0 选择 GPIO 功能。 [1]位控制 cru_sel_lpc_func0, 1 选择此功能, 0 选择 GPIO 功能。 [2]位控制 cru_sel_lpc_func1, 1 选择此功能, 0 选择 GPIO 功能。 [3]位控制 cru_sel_spics, 1 选择此功能,

		0 选择 GPIO 功能。
		[4]位控制 cru_sel_rst_state,1 选择此功
		能,0选择GPIO功能。
		[5]位控制 GMAC 配置信号
		cru_gmu_cfg_cttw,1 选择此功能,0
		选择 GPIO 功能。

当选择某种复用功能后,对应的 GPIO 端口说明表 4-55 所示。例如选择了 cru_sel_lpc_func0,和 cru_sel_lpc_func1,那么对应的 GPIOB[7],GPIO[6:7],GPIOD[0:7]被复用成 LPC 端口。

表 4-55 GPIO 复用寄存器说明

校生14年	GPIO	复用功能
控制线	cru_sel_xxx=0	cru_sel_xxx=1
	PortC[0]	UART0.CD
	PortC[1]	UART0.DTR
CRU_SEL_UART_FU	PortC[2]	UART0.DSR
NC	PortC[3]	UART0.RTS
	PortC[4]	UART0.CTS
	PortC[5]	UART0.RI
	PortC[6]	LPC.irq_outen
	PortC[7]	LPC.irq_n
	PortD[0]	LPC.lframe_n
X X	PortD[1]	LPC.lreset_n
CRU_SEL_LPC_FUNC	PortD[2]	LPC.lck
0	PortD[3]	LPC.lad_outen
	PortD[4]	LPC.lad[0]
	PortD[5]	LPC.lad[1]
	PortD[6]	LPC.lad[2]
	PortD[7]	LPC.lad[3]
CRU_SEL_LPC_FUNC 1	PortB[7]	LPC.ldrq_n
	PortA[0]	clk_obv_sel[0]
CRU_SEL_RST_STAT	PortA[1]	clk_obv_sel[1]
Е	PortA[2]	clk_obv_sel[2]
	PortA[3]	clk_obv_sel[3]

	PortA[4]	rst_fsm[0]
	PortA[5]	rst_fsm[1]
	PortA[6]	rst_fsm[2]
	PortA[7]	rst_fsm[3]
	PortA_Dir_0	rst_fsm[4]
	PortB_Dir_0	cru_clk_obv
CDIT SEL SDICS	PortB[0]	spi_csn[2]
CRU_SEL_SPICS	PortB[1]	spi_csn[3]
CRU_SEL_LINKUP1	PortB[2]	peu_linkup[1]
CRU_SEL_LINKUP2	PortB[3]	peu_linkup[2]
CRU_SEL_LINKUP3	PortB[4]	peu_linkup[3]

4.9.2 GPIO 寄存器说明

4.9.2.1 基地址

表 4-56 GPIO 基地址

名称	基地址
GPIO	0x2800_6000

4.9.2.2 寄存器列表

表 4-57 GPIO 内部寄存器描述

偏移地址	名字	读写方式	说明
		,	端口 A 数据寄存器
0x00	GPIOA_DR	R/W	位宽: GPIO_PWIDTH_A
			默认值: GPIO_SWPORTA_RESET
			端口A数据方向寄存器
0x04	GPIOA_DDR	R/W	位宽: GPIO_PWIDTH_A
			默认值: GPIO_DFLT_DIR_A (for all bits)
			端口B数据寄存器
0x0c	GPIOB_DR	R/W	位宽: GPIO_PWIDTH_B
			默认值: GPIO_SWPORTB_RESET
010	CDIOD DDD	D/W	端口B数据方向寄存器
0x10	GPIOB_DDR	R/W	数据位宽: GPIO_PWIDTH_B

			默认值: GPIO_DFLT_DIR_B (for all bits)
			端口C数据寄存器
0x18	GPIOC_DR	R/W	位宽: GPIO_PWIDTH_C
			默认值: GPIO_SWPORTC_RESET
			端口C数据方向寄存器
0x1c	GPIOC_DDR	R/W	位宽: GPIO_PWIDTH_C
			默认值: GPIO_DFLT_DIR_C (for all bits)
			端口D数据寄存器
0x24	GPIOD_DR	R/W	位宽: GPIO_PWIDTH_D
			默认值: GPIO_SWPORTD_RESET
	GPIOD_DDR	R/W	端口D数据方向寄存器
0x28			位宽: GPIO_PWIDTH_D
			默认值: GPIO_DFLT_DIR_D (for all bits)
	GPIO EXT P	RO	端口 A 外部端口寄存器
0x50	ORTA		位宽: GPIO_PWIDTH_A
			默认值: 0x0
	GPIO EXT P		端口B外部端口寄存器
0x54	ORTB	RO	位宽: GPIO_PWIDTH_B
	OKIB		默认值: 0x0
	GPIO EXT P		端口C外部端口寄存器
0x58	ORTC	RO	位宽: GPIO_PWIDTH_C
	OKIC		默认值: 0x0
	GPIO EXT P		端口D外部端口寄存器
0x5c	ORTD	RO	位宽: GPIO_PWIDTH_D
			默认值: 0x0

注: 当 GPIO 的端口被设置为输入时,需要从 GPIO_EXT_PORTX 中读取输入的数据

GPIO_PWIDTH_X=8; 其中 X 表示 A/B/C/D。本章内名称以此类推。

4.9.2.2.1 数据寄存器 GPIOX_DR (0x00)

表 4-58 数据寄存器(GPIOX_DR)

位	名称	读写方式	默认值	说明
[31:GPI	保留	R/W		
O_PWI		K/W	-	

DTH_X				
[GPIO_ PWIDT H_X- 1:0]	端口 X 数 据寄存器	R/W	GPIO_SWPO RTX_RESET	如果端口 X 数据方向寄存器中对应位设置为输出模式,并且端口 X 的对应控制位设置为软件控制,则向这个寄存器写的值是将要通过端口 X 对应的 I/O引脚输出的信号值。

4.9.2.2.2 方向寄存器 GPIOX DDR (0x04)

表 4-59 方向寄存器(GPIOX DDR)

位	名称	读写方式	默认值	说明
[31:GPIO_P				
WIDTH_X]	,			X Y
				向这个寄存器写的值每一位分别控制端
[GPIO_PWI DTH_X- 1:0]	端口 X 方向寄 存器	R/W	GPIO_D FLT_DI R_X	口 X 对应位的输入输出模式。可以通过 GPIO_DFLT_DIR_X 参数设置系统复位后的默认方式为输入或输出。 •0-输入(默认) •1-输出

4.9.2.2.3 外部数据寄存器 GPIO_EXT_PORTX (0x50)

表 4-60 外部数据寄存器(GPIO_EXT_PORTX)

	なわ	法包卡子	默认	说明
位	名称	读写方式	值	
[31:GPIO_PWI				-
DTH_X]	-	-	-	
				当端口 X 设置为输入时,从这个位置读
[GPIO_PWIDT	外部端	RO	0**0	取的值为端口 X 上输入的信号状态。当
H_X-1:0]	$\square X$	KU	0x0	端口 X 设置为输出时,从这个位置读取
				的值为通过端口 X 输出的信号值。

4.10 上电时序

表 4-61 上电复位信号列表

信号名	说明
PWR_BTN_EN	上电按钮,低电平有效
ATX_EN	ATX 电源加电信号,低电平有效
ATX_GD	ATX 电源加电完成信号
VDDIO_EN	1.8V IO 电源加电信号,低电平有效
VDDIO_GD	1.8V IO 电源加电信号加电完成信号
VDD_CORE_EN	CPU 核心电源加电信号
VDD_CORE_GD	CPU 核心电源加电完成信号
VDDA_PCIE_EN	PCIE 0.95V 核心电源加电信号,低电平有效
VDDA_PCIE_GD	PCIE 0.95V 核心电源加电完成信号
VDD_MCU_EN	1.5V DDR 电源加电信号,低电平有效
VDD_MCU_GD	1.5V DDR 电源加电完成信号
RESET_N	热复位信号,低有效
POR_N	上电复位信号,低有效
PCIE_SLOT_RST_N	所有 PCIE 插槽端的复位信号,信号数目根据 PCIE 设备而定。

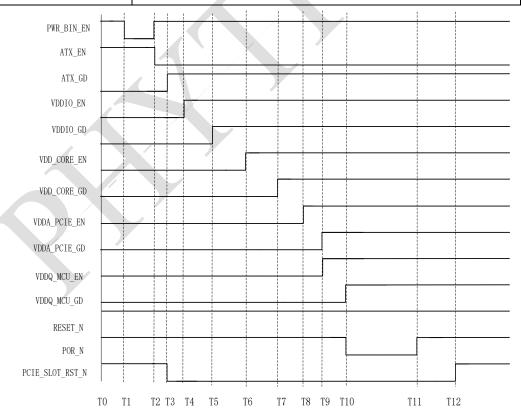


图 4-1 上电复位参考时序图

时序说明:

表 4-62 上电复位参考时序说明

时刻	说明
T0	作为上电复位控制器的 CPLD 或 FPGA 加电并完成复位
T1	加电按钮按下
T2	加电按钮弹起,ATX 电源加电
Т3	收到 ATX 加电完成信号,拉低 PCIE_SLOT_RST
T4	相对 T3 时刻约延时约 20ms,给 1.8V IO 电源加电
T5	收到加电完成信号
Т6	相对 T5 时刻延时 20ms, VDD_CORE 电源上电
Т7	收到上电完成信号
Т8	相对 T7 时刻延时 10ms,给 PCIE 0.95V 核心电源加电
Т9	收到上电完成信号,给 VDDQ_MCU 1.5V 电源加电
T10	收到上电完成信号,保持 REST_N 信号高电平,拉低 POR_N 开始上电复位
T11	相对 T9 时刻延时 40ms, 拉高 POR_N, 完成上电复位
T12	相对 T9 时刻延时 100ms, 拉高 PCIE_SLOT_RST_N, 完成 PCIE 设备复位

5 电气特性

5.1 极限工作条件

表 5-1 极限工作条件

电压范围	值
内核电压范围(VDD_090)	-0.3V∼1.10V
0.75V 参考电压范围(VDD_075)	-0.3V∼1.5V
0.95V IO 电压范围(VDD_095)	-0.3V∼1.5V
1.5V IO 电压范围 (VDD_15)	-0.3V∼1.8V
1.8V IO 电压范围 (VDD_18)	-0.3V~2.0V

5.2 典型工作参数

表 5-2 典型工作参数

参数	符号	条件	最小值	典型值	最大值	单位
内核电源	VDD_CORE			0.9		V
MCU 电源	VDDQ_MCUxx			1.5		V
PCIE 模拟部分电源	VDDA_PCIE	7		0.95		V
PCIE 数字部分电源	VDDHV_PCIE			1.5		V
IO 电源	VDDIO			1.8		V
锁相环电源	VDDHV_PLLx			1.8		V
高电平输入电压	VIH		1.26			V
低电平输入电压	VIL				0.54	V
内核电源电流	IVDD_CORE	1.5GHz, 0.9V		20		A
MCU 电源电流	IVDDQ_MCUx x	800MHz, 1.5V		3		A
PCIE 模拟部分电源电流	IVDDA_PCIE	8Gbps, 0.95V		3		A
PCIE 数字部分电源电流	IVDDHV_PCIE	8Gbps, 1.5V		2		A

IO 电源电流	IVDDIO		1		A
锁相环电源电流	IVDDHV_PLLx		0.1		A
高电平输出电流	ЮН	4.4	9.6	33	mA
低电平输出电流	IOL	-5.5	-9.1	-25	mA

表 5-3 典型工作参数

电压范围	值
内核电压(VDD_090)	0.9×(1±5%)V
0.75V 参考电压(VDD_075)	0.75×(1±5%)V
0.95V IO 电压(VDD_095)	0.95×(1±5%)V
1.5V IO 电压(VDD_15)	1.5×(1±5%)V
1.8V IO 电压(VDD_18)	1.8×(1±5%)V

6 封装数据

6.1 封装尺寸

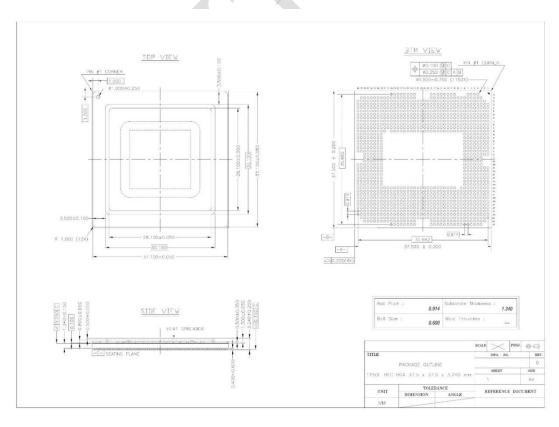


图 6-1 CPU 封装尺寸

7 装焊温度曲线

如果采用 Sn10Pb90 作为 BGA 焊球,则焊接时即可采用无铅焊膏,也可采用含铅焊膏(Sn63Pb37)。如果采用无铅 BGA 焊球,则焊接时必须采用无铅焊膏。如果同一块板上既有含铅器件又有无铅器件,焊接时也必须采用无铅焊膏。

7.1 无铅焊接温度曲线中各温区的作用

采用德国 ERSA 公司制造的 Hotflow11 回流焊炉和 Sensor Shuttle 温度传感器进行测试点温度采集,最终得到如图 7-1 所示的适用于无铅焊料的温度曲线。

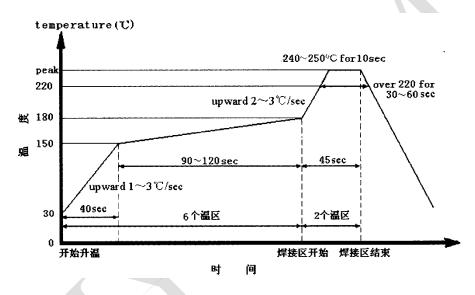


图 7-1 无铅回流焊接曲线

该温度曲线分为五个部分:

- (1) 第一升温区:将 PCB 及元器件从室温加热到 150℃。在这个区,由于受基板材料与元件的限制,PCB 及元器件应以 1~3℃/Sec 的速率连续上升,最理想为接近 2℃/Sec,温度升得太快,会对元件造成热冲击而导致 PCB 变形。此时焊膏中的溶剂、气体开始蒸发,同时,焊膏中的助焊剂润湿焊盘、元器件端子和引脚,焊膏软化、塌落、覆盖焊盘、元器件端子和引脚并与氧气隔离。整个升温过程持续 40Sec 左右。
- (2) 预热区,又称保温区:温度从 150℃上升到 180℃,PCB 和元器件得到充分的预热,以防突然进入焊接高温区而损坏 PCB 和元器件,保温区热风温度不变,PCB 和元器件依靠传热温度自然升高 30℃左右,它的主要功能是提供足够的热能,令焊膏中的助焊剂开始活化,将金属氧化物和某些污染从焊盘、元件引脚和焊膏金属颗粒上清除,与此同时,挥发性的溶剂和水汽从焊膏中挥发。整个过程持续 90~120Sec(因不同种类焊膏而异)。预热时间不足或过长皆都会

导致后期焊锡球的产生。

- (3)第二升温区: 温度从 180℃上升到无铅焊料的熔点 217℃以上,这个区是助焊剂活动的高峰期,于焊接前做最后的氧化分解,一般时间 20~30Sec,尽量靠近 20Sec。时间过长会使助焊剂中的松香过早耗尽引起再氧化,令焊接不良或产生焊锡球。
- (4)焊接区:温度从220℃至峰值温度再回到220℃,升温速率2~3℃/Sec。在这个区焊膏中的金属颗粒首先单独熔化,并覆盖在金属表面上。当单个的金属颗粒全部熔化后,液态焊锡对PCB的焊盘、元器件端头和引脚润湿、扩散、漫流或回流混合形成焊锡接点。峰值温度的设定一般为焊膏熔点加上30℃。这个区域的时间为一般为30~60s(实际焊接时最好60s~90s),视元件大小不同而不同。假如这个区的温度设得太高,会使升温速率超过2~3℃/Sec,或达到的峰值温度比理想的高,会引起PCB的过分变形,并损坏元器件。
- (5)冷却区:焊料凝固,形成平滑光亮的焊点。冷却速率 4~5℃/Sec,较快的冷却速率可得到较细的颗粒结构、较强的焊接强度和较亮的焊点。但冷却速度较快会引起元件内部的热应力。

7.2 有铅焊接温度曲线中各温区的作用

以下是日本千住(SENJU)公司有铅焊膏推荐使用的温度曲线。

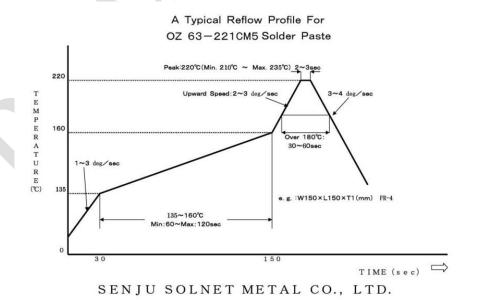


图 7-2 温度曲线

各温区的作用与有铅焊接类似,焊接区的时间一般为 $30\sim60s$ (实际焊接时最好控制在 $60s\sim90s$)。

8 引脚描述

8.1 通用 IO 类引脚(118 PIN)

表 8-1 通用 IO 类引脚

A- E- 4-	引脚	信号	片内上	-1 Ak W ed	正常运行
信号名	编号	类型	下拉	功能说明	连接方式
(0)	1 77 1 2	-	Up	1'b0:启动直接进入 AArch32 模式	
AA64NAA32	AK13	I		1'b1:启动直接进入 AArch64 模式	
SHUTDOWN	AL12	О		1'b1:通知片外 CPLD, CPU 可以关电	
CLK_REF	AN33	I	Down	参考时钟,默认 50MHz	
RESET_N	AL13	I	Up	热复位信号,低有效	
POR_N	AK12	I	Up	上电复位信号,低有效	
CRU_DTI_RST_OK	AJ34	О		复位完成信号	
CRU_I2C_SDA	AP32	В	Up	带外诊断专用 I2C 接口	
CRU_I2C_SCL	AL25	I	Up	带外诊断专用 I2C 接口	
ERROR_INT	AL11	О		错误中断输出,用于带外诊断	
MCHO 12C SCI	AK9			MCU0 的 I2C 接口信号,用于读取 DIMM 的	
MCU0_I2C_SCL	AK9			SPD	
MCU0 I2C SDA	AL9			MCU0 的 I2C 接口信号,用于读取 DIMM 的	
MCOU_IZC_SDA	AL9			SPD	
MCU1 I2C SCL	AP34			MCU1 的 I2C 接口信号,用于读取 DIMM 的	
WC01_I2C_SCL	AF 34			SPD	
MCU1 I2C SDA	AN34			MCU1 的 I2C 接口信号,用于读取 DIMM 的	
WC01_I2C_SDA	ANJT			SPD	
UART0_SIN	AL7	I	Up	串口0数据输入	
UART0_SOUT	AN7	О		串口0数据输出	
UART1_SIN	AE7	I	Up	串口1数据输入	
UART1_SOUT	AH8	О		串口1数据输出	
CDIOCO HARTO CD	A 10	В	Up	GPIO C 第 0 位输入输出,串口 0 Data Carrier	
GPIOC0_UART0_CD	AJ8	ט	Ор	检测 Modem 状态输入信号	
GPIOC1 UART0 DTR	AP8	В	T T	GPIOC第1位输入输出;串口0ModemControl	
Grioci_UARIU_DIR	Arð	D	Up	数据终端 ready 输出信号	
GPIOC2_UART0_DSR	AH7	В	Up	GPIO C 第 2 位输入输出; 串口 0 Data Set Ready	

				Modem 状态输入信号
CDIOC2 LIADTO DEC	A F.7	D	TT	GPIOC第3位输入输出;串口0 Modem Control
GPIOC3_UART0_RTS	AF7	В	Up	发送请求输出信号
CDIOCA IIA DEO CEG	410	D	T T	GPIOC第4位输入输出;清除发送 Modem 状
GPIOC4_UART0_CTS	AL8	В	Up	态输入信号
CDIOCE III DTO DI	4 E0	D.	Up	GPIOC5 输入输出; Ring Indicator Modem 状态
GPIOC5_UART0_RI	AF8	В		输入信号
I2C0_SCL	AN16	В	Up	I2C 0 接口的时钟信号
I2C0_SDA	AP16	В	Up	I2C 0 接口的数据信号
I2C1_SCL	AN15	В	Up	I2C 1 接口的时钟信号
I2C1_SDA	AP15	В	Up	I2C 1 接口的数据信号
SPI_EXT_CSN0	AN14	О		SPI 接口 0 号片选
SPI_EXT_CSN1	AP14	О		SPI 接口 1 号片选
SPI_EXT_SCK	AN13	О		SPI 接口时钟信号
SPI_EXT_SO	AN12	О		SPI 接口数据输出信号
EXT_SPI_SI	AP13	I	Down	SPI 接口数据输入信号
GPIOC6_LPC_EXT_IRQ		-	Up	CDVO CLARY (PARK) #AUL
_OUTEN	AG8	В		GPIO C 第 6 位输入输出;
GPIOC7_LPC_IRQ	AP7	В	Up	GPIOC第7位输入输出;
GPIOD0_LPC_EXT_LF	4 D1 1	D		CDIOD St O Cotto) to III
RAME	AP11	В	Up	GPIO D 第 0 位输入输出;
GPIOD1_EXT_LPC_LR	AP12	В	I I.a	GPIOD第1位输入输出;
ESET	AP12	В	Up	GPIOD 第1位制八制品;
GPIOD2_EXT_LPC_LC	ANI11	D	I I	CDIOD 第 2 位於) 於山
K	AN11	В	Up	GPIO D 第 2 位输入输出;
GPIOD3_LPC_EXT_LA	A N/10	В	I I.a	GPIOD第3位输入输出;
D_OUTEN	AN10	В	Up	GPIOD 第 3 位制八制品;
GPIOD4_LPC_LAD0	AP10	В	Up	GPIO D 第 4 位输入输出;
GPIOD5_LPC_LAD1	AN9	В	Up	GPIO D 第 5 位输入输出;
GPIOD6_LPC_LAD2	AP9	В	Up	GPIO D 第 6 位输入输出;
GPIOD7_LPC_LAD3	AJ7	В	Up	GPIO D 第7位输入输出;
GPIOB7_EXT_LPC_LD	A 3.40	D	TT	CDIOD \$ 7 (c) the a the little of the little
RQ	AM8	В	Up	GPIO B 第 7 位输入输出;
GPIOA0_CLK_OBV_SE	AX/17	ח	T T	GPIO A 第 0 位输入输出;时钟观测选择信号
L0	AY17	В	Up	的输入信号 0

GPIOA1_CLK_OBV_SE	AW1	В	Up	GPIO A 第 1 位输入输出;时钟观测选择信号	
L1	8			的输入信号 1	
GPIOA2_CLK_OBV_SE	AW2	В	Up	GPIO A 第 2 位输入输出; 时钟观测选择信号	
L2	9			的输入信号 2	
GPIOA3_CLK_OBV_SE	AW3	В	Up	GPIO A 第 3 位输入输出;时钟观测选择信号	
L3	0		1	的输入信号 3	
GPIOA4_RST_FSM0	AN25	В	Up	GPIO A 第 4 位输入输出; 复位状态机输出信号 0	
GPIOA5_RST_FSM1	AN26	В	Up	GPIO A 第 5 位输入输出; 复位状态机输出信号 1	
GPIOA6_RST_FSM2	AN27	В	Up	GPIO A 第 6 位输入输出; 复位状态机输出信号 2	
GPIOA7_RST_FSM3	AN28	В	Up	GPIO A 第 7 位输入输出; 复位状态机输出信号 3	
GPIOB0_SPI_EXT_CSN 2	AW1 7	В	Up	GPIO B 第 0 位输入输出;SPI 接口 2 号片选	
GPIOB1_SPI_EXT_CSN 3	AY18	В	Up	GPIOB第1位输入输出;SPI接口3号片选	
GPIOB2_PEU_LINKUP	AY29	В	Up	GPIO B 第 2 位输入输出; PCIE linkup 输出信	
1	A1 29	Б	Ор	号	
GPIOB3_PEU_LINKUP	43/20	D	TT	GPIO B 第 3 位输入输出; PCIE linkup 输出信	
2	AY30	В	Up	号	
GPIOB4_PEU_LINKUP	AW3			GPIO B 第 4 位输入输出; PCIE linkup 输出信	
3	1	В	Up	号	
GPIOB5	AP25	B	Up	GPIO B 第 5 位输入输出;	
GPIOB6	AP26	В	Up	GPIOB第6位输入输出;	
GPIOA_DDR_RST_FSM					
4	AP28	О		GPIO A 数据方向;复位状态机输出信号 4	
GPIOB DDR CRU LK					
OBV	AP27	О		GPIO B 数据方向; CRU 观测时钟输出信号	
PCIE_LINKUP	AK11			PCIE 控制器 0 的 Linkup 信号	
RSV1	AL16			保留引脚	浮空
RSV2	AL15			保留引脚	浮空
RSV3	AL14			保留引脚	浮空
RSV4	AK15			保留引脚	浮空

RSV5	AK16			保留引脚	浮空
RSV6	AK27	I	Down	保留引脚	接地
RSV7	AL27	I	Down	保留引脚	接
KSV/	AL21	1	Down		VDD_IO
RSV8	AK28	I	Down	保留引脚	接地
RSV9	AL28	I	Down	保留引脚	接地
RSV10	AF34	I	Down	保留引脚	接地
RSV11	AL34	I	Down	保留引脚	接地
RSV12	AP33	I	Down	保留引脚	接地
RSV13	AN32	I	Down	保留引脚	接地
RSV14	AK30	I	Down	保留引脚	接地
RSV15	AK31	I	Down	保留引脚	接地
RSV16	AL31	I	Down	保留引脚	接地
RSV17	AK14	I	Down	保留引脚	接地
RSV18	AN8	I	Down	保留引脚	接地
RSV19	AE8	О		保留引脚	浮空
RSV20	AM7	О		保留引脚	浮空
RSV21	AK7	О		保留引脚	浮空
RSV22	AG7	O		保留引脚	浮空
RSV23	AK8	0	1	保留引脚	浮空
RSV24	AD34	I	Down	保留引脚	接地
RSV25	AH34	I	Down	保留引脚	接地
RSV26	AM3 4	I	Down	保留引脚	接地
RSV27	AM3	I	Down	保留引脚	接地
RSV28	AJ33	I	Down	保留引脚	接地
RSV29	AG34	О		保留引脚	浮空
RSV30	AL32	I	Down	保留引脚	接地
RSV31	AK10	I	Down	保留引脚	接地
RSV32	AL10	I	Down	保留引脚	接地
RSV33	AF33	I	Down	保留引脚	接地
RSV34	AP30	I	Up	保留引脚	接地
RSV35	AN30	I	Up	保留引脚	接地

RSV36	AP31	I	Up	保留引脚	接地
RSV37	AN31	О		保留引脚	浮空
RSV38	AK32	I	Down	保留引脚	接地
RSV39	AK34	I	Down	保留引脚	接地
RSV40	AK33	I	Down	保留引脚	接地
RSV41	AH33	I	Down	保留引脚	接地
RSV42	AL26	I	Down	保留引脚	接地
RSV43	AE33	I	Down	保留引脚	接地
RSV44	AK26	I	Down	保留引脚	接地
RSV45	AE34	I	Down	保留引脚	接地
RSV46	AL33	Ι	Up	保留引脚	接地
RSV47	AK25	I	Down	保留引脚	接地
RSV48	AG33	I	Down	保留引脚	接地
RSV49	AK29	I	Up	保留引脚	接地
RSV50	AL30	I	Up	保留引脚	接地
RSV51	AK17	Ι	Down	保留引脚	接地
RSV52	AL17	Ι	Down	保留引脚	接地
RSV53	AN17	I	Up	保留引脚	接地
RSV54	AP17	O		保留引脚	浮空
RSV55	AL29	0		保留引脚	浮空
RSV56	AN29	0		保留引脚	浮空
RSV57	AP29	O		保留引脚	浮空

注:

(1)信号类型: I 输入引脚, O 输出引脚, B 双向引脚, Z 三态或高阻引脚, A 模拟信号脚, GND 地, P 电源引脚, RSV 保留引脚, NC 空引脚;

(2)片内上下拉: Up 片内上拉, Down 片内下拉。

上述引脚中存在功能复用情况,具体的复用及控制信号如表 7-2。

表 8-2 通用 IO 类引脚的功能复用情况

控制线	功能 0	功能 1	
12 刺线	cru_sel_xxx=0	cru_sel_xxx=1	
	GPIOC0	UART0.CD	
cru_sel_uart_func	GPIOC1	UART0.DTR	
	GPIOC2	UART0.DSR	

	GPIOC3	UARTO.RTS
	GPIOC4	UART0.CTS
	GPIOC5	UART0.RI
	GPIOC6	LPC.irq_outen
	GPIOC7	LPC.irq_n
	GPIOD0	LPC.lframe_n
	GPIOD1	LPC.lreset_n
	GPIOD2	LPC.lck
cru_sel_lpc_func0	GPIOD3	LPC.lad_outen,指示 LAD 的方向,用于控制电平 转换芯片的转换方向
	GPIOD4	LPC.lad[0]
	GPIOD5	LPC.lad[1]
	GPIOD6	LPC.lad[2]
	GPIOD7	LPC.lad[3]
cru_sel_lpc_func1	GPIOB7	LPC.ldrq_n
	GPIOA0	clk_obv_sel[0],选择被观察时钟的选择信号
	GPIOA1	clk_obv_sel[1],选择被观察时钟的选择信号
	GPIOA2	clk_obv_sel[2],选择被观察时钟的选择信号
	GPIOA3	clk_obv_sel[3],选择被观察时钟的选择信号
	GPIOA4	rst_fsm[0],复位状态机输出,用于观察复位状态
	GPIOA5	rst_fsm[1], 复位状态机输出,用于观察复位状态
cru_sel_rst_state	GPIOA6	rst_fsm[2],复位状态机输出,用于观察复位状态
cru_ser_ist_state	GPIOA7	rst_fsm[3],复位状态机输出,用于观察复位状态
	GPIOA_DDR,GPIOA 的 bit0 的	
	方向控制脚的输出,一般用于控	
	制电平转换芯片的 Dir 接口	rst_fsm[4],复位状态机输出,用于观察复位状态
	GPIOB_DDR,GPIOB的 bit0的	
	方向控制脚的输出,一般用于控	
	制电平转换芯片的 Dir 接口	cru_clk_obv,被选择输出的观察时钟
cru_sel_spics	GPIOB0	spi_csn[2],SPI Flash 接口的片选 2
cru_ser_spics	GPIOB1	spi_csn[3],SPI Flash 接口的片选 3
cru_sel_linkup_1	GPIOB2	peu_linkup[1], PCIE 1 号控制器的 linkup 指示
cru_sel_linkup_2	GPIOB3	peu_linkup[2], PCIE 2 号控制器的 linkup 指示
cru_sel_linkup_3	GPIOB4	peu_linkup[3], PCIE 3 号控制器的 linkup 指示

注:复位完成后, $cru_sel_rst_state$ 的值为 1,即选择的是功能 1 而不是功能 0,

如果要使用功能 0,则需要通过指令将 CRU 部件中的 cru_sel_rst_state 控制位置位为 0。其他复用控制信号 cru_sel_xxx 的复位后默认值则是 0,即默认选择功能 0。

8.2 GMAC 引脚 (28 PIN)

表 8-2 GMAC 引脚

信号名	引脚	信号	片内	7.1. 台户 7.1.1. LEI
165名	编号	类型	上下拉	功能说明
GMU_CLK_OSC	AK18	I		输入 osc 时钟,125MHz
G1_CLK_GTX	AP18	О		GMAC0 向 PHY 输出 TX 时钟
G1_CLK_RX	AL18	I		GMAC0 输入 RX 时钟
G1_CLK_TX	AN18	I		GMAC0 输入 TX 时钟
G1_COL	AL23	I		GMAC0 PHY 冲突检测信号
G1_CRS	AK23	I		GMAC0 PHY 发送接收非 IDLE 状态
G1_MDC	AN23	О		GMAC0 管理接口时钟
G1_MDIO	AP23	В	Down	GMAC0 管理接口输入输出数据
G1_RX0	AK19	I		GMAC0 数据输入 bit0
G1_RX1	AL19	I		GMAC0 数据输入 bit1
G1_RX2	AK20	I		GMAC0 数据输入 bit2
G1_RX3	AL20	I		GMAC0 数据输入 bit3
G1_RX4	AK21	I	_	GMAC0 数据输入 bit4
G1_RX5	AL21	I		GMAC0 数据输入 bit5
G1_RX6	AL22	I		GMAC0 数据输入 bit6
G1_RX7	AK22	I		GMAC0 数据输入 bit7
G1_RXDV	AL24	I		GMAC0 数据输入有效
G1_RXER	AK24	I		GMAC0 接收 Error
G1_TX0	AN19	О		GMAC0 数据输出 bit
G1_TX1	AP19	0		GMAC0 数据输出 bit
G1_TX2	AN20	О		GMAC0 数据输出 bit
G1_TX3	AP20	О		GMAC0 数据输出 bit
G1_TX4	AN21	О		GMAC0 数据输出 bit
G1_TX5	AP21	О		GMAC0 数据输出 bit
G1_TX6	AP22	О		GMAC0 数据输出 bit
G1_TX7	AN22	О		GMAC0 数据输出 bit
·				

G1_TXEN	AP24	О	GMAC0 数据输出有效
G1 TXER	AN24	О	GMAC0 发送 Error

注:

- (1)信号类型: I 输入引脚, O 输出引脚, Z 三态或高阻引脚, A 模拟信号脚, GND 地, P 电源引脚, RSV 保留引脚, NC 空引脚;
 - (2)片内上下拉: Up 片内上拉, Down 片内下拉, 空白为既无上拉也无下拉。

8.3 PCIE 引脚 (140 PIN)

表 8-3 PCIE 引脚

冷 只 友	引脚编	信号类	片内	T-1-4K-7A DD
信号名	号	型	上下拉	功能说明
PCIE0_CLKN	J33	I		1000411-
PCIE0_CLKP	K33	I		100MHz 差分时钟输入
PCIE0_RBIAS0	J23	A		
PCIE0_RBIAS1	J25	A		参考电阻偏置
PCIE0_RBIAS2	J27	A		多名巴西洲直
PCIE0_RBIAS3	J29	A		
PCIE0_RX00N	C22	I		
PCIE0_RX00P	D22	I		
PCIE0_RX01N	A23	I	Ť	
PCIE0_RX01P	B23	I		
PCIE0_RX02N	C24	I		
PCIE0_RX02P	D24	1		
PCIE0_RX03N	A25	I		
PCIE0_RX03P	B25	I		
PCIE0_RX04N	C26	I		输入链路差分信号
PCIE0_RX04P	D26	I		
PCIE0_RX05N	A27	I		
PCIE0_RX05P	B27	I		
PCIE0_RX06N	C28	I		
PCIE0_RX06P	D28	I		
PCIE0_RX07N	A29	I		
PCIE0_RX07P	B29	I		
PCIE0_RX08N	C30	I		

PCIE0_RX08P	D30	I	
PCIE0_RX09N	E31	I	
PCIE0_RX09P	F31	I	
PCIE0_RX10N	B32	I	
PCIE0_RX10P	C32	I	
PCIE0_RX11N	D33	I	
PCIE0_RX11P	E33	I	
PCIE0_RX12N	B34	I	
PCIE0_RX12P	C34	I	
PCIE0_RX13N	D35	I	
PCIE0_RX13P	E35	I	
PCIE0_RX14N	B36	I	
PCIE0_RX14P	C36	I	
PCIE0_RX15N	D37	I	
PCIE0_RX15P	E37	I	
PCIE0_TX00N	G20	О	
PCIE0_TX00P	H20	0	
PCIE0_TX01N	E21	O	
PCIE0_TX01P	F21	О	
PCIE0_TX02N	G22	0	
PCIE0_TX02P	H22	0	
PCIE0_TX03N	E23	O	
PCIE0_TX03P	F23	O	
PCIE0_TX04N	G24	О	
PCIE0_TX04P	H24	О	
PCIE0_TX05N	E25	О	
PCIE0_TX05P	F25	О	
PCIE0_TX06N	G26	О	
PCIE0_TX06P	H26	О	
PCIE0_TX07N	E27	О	
PCIE0_TX07P	F27	О	
PCIE0_TX08N	G28	О	
PCIE0_TX08P	H28	О	
PCIE0_TX09N	E29	О	

输出链路差分信号

PCIE0_TX09P	F29	О	
PCIE0_TX10N	G30	О	
PCIE0_TX10P	H30	О	
PCIE0_TX11N	G32	О	
PCIE0_TX11P	H32	О	
PCIE0_TX12N	F34	О	
PCIE0_TX12P	G34	О	
PCIE0_TX13N	H35	О	
PCIE0_TX13P	J35	О	
PCIE0_TX14N	F36	О	
PCIE0_TX14P	G36	О	
PCIE0_TX15N	Н37	О	
PCIE0_TX15P	J37	О	
PCIE1_CLKN	J31	I	100MHz 差分时钟输入
PCIE1_CLKP	K31	I	100MHZ 差分的 評劃八
PCIE1_RBIAS0	J21	A	
PCIE1_RBIAS1	J19	A	会 老由阳 伯罗
PCIE1_RBIAS2	J17	A	参考电阻偏置
PCIE1_RBIAS3	J15	Α	
PCIE1_RX00N	C20	I	
PCIE1_RX00P	D20	I	
PCIE1_RX01N	C18	I	
PCIE1_RX01P	D18	I	
PCIE1_RX02N	A17	I	
PCIE1_RX02P	B17	I	
PCIE1_RX03N	C16	I	
PCIE1_RX03P	D16	I	输入链路差分信号
PCIE1_RX04N	A15	I	
PCIE1_RX04P	B15	I	
PCIE1_RX05N	C14	I	
PCIE1_RX05P	D14	I	
PCIE1_RX06N	A13	I	
PCIE1_RX06P	B13	I	
PCIE1_RX07N	C12	I	

PCIE1_RX07P	D12	I	
PCIE1_RX08N	A11	I	
PCIE1_RX08P	B11	I	
PCIE1_RX09N	D10	I	
PCIE1_RX09P	E10	I	
PCIE1_RX10N	В9	I	
PCIE1_RX10P	С9	I	
PCIE1_RX11N	D8	I	
PCIE1_RX11P	E8	I	
PCIE1_RX12N	A7	I	
PCIE1_RX12P	В7	I	
PCIE1_RX13N	С6	I	
PCIE1_RX13P	D6	I	
PCIE1_RX14N	A5	I	
PCIE1_RX14P	В5	I	
PCIE1_RX15N	C4	I	
PCIE1_RX15P	D4	I	
PCIE1_TX00N	E19	Ó	
PCIE1_TX00P	F19	О	
PCIE1_TX01N	G18	0	
PCIE1_TX01P	H18	0	
PCIE1_TX02N	E17	0	
PCIE1_TX02P	F17	0	
PCIE1_TX03N	G16	О	
PCIE1_TX03P	H16	О	
PCIE1_TX04N	E15	О	
PCIE1_TX04P	F15	О	
PCIE1_TX05N	G14	О	
PCIE1_TX05P	H14	О	
PCIE1_TX06N	E13	О	
PCIE1_TX06P	F13	О	
PCIE1_TX07N	H12	О	
PCIE1_TX07P	J12	О	
PCIE1_TX08N	F11	О	

输出链路差分信号

	<u>-</u>	<u>-</u> .	<u>-</u> .	_
PCIE1_TX08P	G11	О		
PCIE1_TX09N	H10	О		
PCIE1_TX09P	J10	О		
PCIE1_TX10N	F9	О		
PCIE1_TX10P	G9	О		
PCIE1_TX11N	Н8	О		
PCIE1_TX11P	Ј8	О		
PCIE1_TX12N	F7	О		
PCIE1_TX12P	G7	О		
PCIE1_TX13N	Н6	О		
PCIE1_TX13P	J6	О		
PCIE1_TX14N	E5	О		
PCIE1_TX14P	F5	О		
PCIE1_TX15N	G4	О		
PCIE1_TX15P	H4	О		

注:

- (1)信号类型: I 输入引脚, O 输出引脚, Z 三态或高阻引脚, A 模拟信号脚, GND 地, P 电源引脚, RSV 保留引脚, NC 空引脚;
 - (2)片内上下拉: up 片内上拉, down 片内下拉, 空白为既无上拉也无下拉。

8.4 DDR3 引脚(312 PIN)

表 8-4 DDR3 存储控制器引脚

台 日 夕	引脚	信号	片内	-1-4K2H-00
信号名	编号	类型	上下拉	功能说明
M0_A00	AP1	О		通道 0 存储器地址, bit 0
M0_A01	AL1	О		通道 0 存储器地址, bit 1
M0_A02	AL2	О		通道 0 存储器地址, bit 2
M0_A03	AK5	О		通道 0 存储器地址, bit 3
M0_A04	AK4	О		通道 0 存储器地址, bit 4
M0_A05	AJ5	О		通道 0 存储器地址, bit 5
M0_A06	AJ4	О		通道 0 存储器地址, bit 6
M0_A07	AK1	О		通道 0 存储器地址, bit 7
M0_A08	AK2	О		通道 0 存储器地址, bit 8
M0_A09	AH5	О		通道 0 存储器地址, bit 9

M0_A10	AR1	О	通道 0 存储器地址, bit 10
M0_A11	AH4	О	通道 0 存储器地址, bit 11
M0_A12	AJ2	О	通道 0 存储器地址, bit 12
M0_A13	AT4	О	通道 0 存储器地址, bit 13
M0_A14	AG5	О	通道 0 存储器地址, bit 14
M0_A15	AH2	О	通道 0 存储器地址, bit 15
MO ATDO	AL4	О	通道 0 存储器 ATB0,模拟测试总线信号,留待 IP
M0_ATB0			公司观察使用。PCB 设计需保证该信号可观察。
MO ATD1			通道 0 存储器 ATB1,模拟测试总线信号,留待 IP
M0_ATB1	AL5	О	公司观察使用。PCB 设计需保证该信号可观察。
M0_BA0	AP4	О	通道 0 存储器地址, bit 0
M0_BA1	AR2	О	通道 0 存储器地址, bit 1
M0_BA2	AG4	О	通道 0 存储器地址, bit 2
M0_CAL_BLK	AT2	I	通道 0 存储器 CAL_BLK
M0_CAS	AR5	О	通道0存储器列地址选通
M0_CKE0	AH1	О	通道 0 存储器时钟使能, cs 0
M0_CKE1	AF4	O	通道 0 存储器时钟使能, cs 1
M0_CKE2	AF5	Ó	通道 0 存储器时钟使能, cs 2
M0_CKE3	AG2	О	通道 0 存储器时钟使能, cs 3
M0_CLK0N	AM5	0	通道 0 存储器时钟一, cs0
M0_CLK0P	AM4	0	通道 0 存储器时钟+, cs0
M0_CLK1N	AM2	O	通道 0 存储器时钟一, cs1
M0_CLK1P	AM1	0	通道 0 存储器时钟+, cs1
M0_CLK2N	AN5	О	通道 0 存储器时钟一, cs2
M0_CLK2P	AN4	О	通道 0 存储器时钟+, cs2
M0_CLK3N	AN2	О	通道 0 存储器时钟一, cs3
M0_CLK3P	AN1	О	通道 0 存储器时钟+, cs3
M0_CS0	AT1	О	通道 0 存储器片选, cs0
M0_CS1	AT5	О	通道0存储器片选,cs1
M0_CS2	AU5	О	通道 0 存储器片选, cs2
M0_CS3	AU4	О	通道 0 存储器片选, cs3
M0_ODT0	AU2	О	通道0存储器ODT,cs0
M0_ODT1	AV1	О	通道 0 存储器 ODT, cs1
M0_ODT2	AU1	О	通道 0 存储器 ODT, cs2

M0_ODT3	AV2	О	通道 0 存储器 ODT, cs3
M0_PAR_ERR	AJ1	Ι	通道 0 存储器的奇偶校验结果
M0_PAR_IN	AP2	О	通道 0 存储器的奇偶校验值
M0_RAS	AP5	О	通道0存储器行地址选通
M0_RESET	AG1	О	通道0存储器复位
M0_WE	AR4	О	通道0存储器写使能
M0_S0_DMN	AT9	I/O	通道 0 存储器数据屏蔽-, slice0
M0_S0_DMP	AU9	I/O	通道 0 存储器数据屏蔽+, slice0
M0_S0_DQ00	AU7	I/O	通道 0 存储器数据, bit0
M0_S0_DQ01	AU12	I/O	通道 0 存储器数据, bit1
M0_S0_DQ02	AU11	I/O	通道 0 存储器数据, bit2
M0_S0_DQ03	AT12	I/O	通道 0 存储器数据, bit3
M0_S0_DQ04	AT11	I/O	通道 0 存储器数据, bit4
M0_S0_DQ05	AT8	I/O	通道 0 存储器数据, bit5
M0_S0_DQ06	AU8	I/O	通道 0 存储器数据, bit6
M0_S0_DQ07	AT7	I/O	通道 0 存储器数据, bit7
M0_S0_DQSN	AU10	I/O	通道 0 存储器数据选通-, slice0
M0_S0_DQSP	AT10	I/O	通道 0 存储器数据选通+, slice0
M0_S1_DMN	AW5	I/O	通道 0 存储器数据屏蔽-, slice1
M0_S1_DMP	AY5	I/O	通道 0 存储器数据屏蔽+, slice1
M0_S1_DQ08	AY4	I/O	通道 0 存储器数据, bit08
M0_S1_DQ09	AW8	I/O	通道 0 存储器数据, bit09
M0_S1_DQ10	AY7	I/O	通道 0 存储器数据, bit10
M0_S1_DQ11	AW7	I/O	通道 0 存储器数据, bit11
M0_S1_DQ12	AW4	I/O	通道 0 存储器数据, bit12
M0_S1_DQ13	AY3	I/O	通道 0 存储器数据, bit13
M0_S1_DQ14	AW3	I/O	通道 0 存储器数据, bit14
M0_S1_DQ15	AY8	I/O	通道 0 存储器数据, bit15
M0_S1_DQSN	AY6	I/O	通道 0 存储器数据选通-, slice1
M0_S1_DQSP	AW6	I/O	通道 0 存储器数据选通+, slice1
M0_S2_DMN	W2	I/O	通道 0 存储器数据屏蔽-, slice2
M0_S2_DMP	W1	I/O	通道 0 存储器数据屏蔽+, slice2
M0_S2_DQ16	V1	I/O	通道 0 存储器数据, bit16
M0_S2_DQ17	AE2	I/O	通道 0 存储器数据, bit17

M0_S2_DQ18	AD1	I/O	通道 0 存储器数据, bit18
M0_S2_DQ19	AD2	I/O	通道 0 存储器数据, bit19
M0_S2_DQ20	AE1	I/O	通道 0 存储器数据, bit20
M0_S2_DQ21	V2	I/O	通道 0 存储器数据, bit21
M0_S2_DQ22	U2	I/O	通道 0 存储器数据, bit22
M0_S2_DQ23	U1	I/O	通道 0 存储器数据, bit23
M0_S2_DQSN	AC1	I/O	通道 0 存储器数据选通-, slice2
M0_S2_DQSP	AC2	I/O	通道 0 存储器数据选通+, slice2
M0_S3_DMN	AA5	I/O	通道 0 存储器数据屏蔽-, slice3
M0_S3_DMP	AA4	I/O	通道 0 存储器数据屏蔽+, slice3
M0_S3_DQ24	W4	I/O	通道 0 存储器数据, bit24
M0_S3_DQ25	AD4	I/O	通道 0 存储器数据, bit25
M0_S3_DQ26	AC4	I/O	通道 0 存储器数据, bit26
M0_S3_DQ27	AD5	I/O	通道 0 存储器数据, bit27
M0_S3_DQ28	AC5	I/O	通道 0 存储器数据, bit28
M0_S3_DQ29	Y5	I/O	通道 0 存储器数据, bit29
M0_S3_DQ30	Y4	I/O	通道 0 存储器数据, bit30
M0_S3_DQ31	W5	I/O	通道 0 存储器数据, bit31
M0_S3_DQSN	AB4	I/O	通道 0 存储器数据选通-, slice3
M0_S3_DQSP	AB5	I/O	通道 0 存储器数据选通+, slice3
M0_S4_DMN	P5	I/O	通道 0 存储器数据屏蔽-, slice4
M0_S4_DMP	P4	I/O	通道 0 存储器数据屏蔽+, slice4
M0_S4_DQ32	M4	I/O	通道 0 存储器数据, bit32
M0_S4_DQ33	U5	I/O	通道 0 存储器数据, bit33
M0_S4_DQ34	T4	I/O	通道 0 存储器数据, bit34
M0_S4_DQ35	T5	I/O	通道 0 存储器数据, bit35
M0_S4_DQ36	U4	I/O	通道 0 存储器数据, bit36
M0_S4_DQ37	N5	I/O	通道 0 存储器数据, bit37
M0_S4_DQ38	N4	I/O	通道 0 存储器数据, bit38
M0_S4_DQ39	M5	I/O	通道 0 存储器数据, bit39
M0_S4_DQSN	R4	I/O	通道 0 存储器数据选通-, slice4
M0_S4_DQSP	R5	I/O	通道 0 存储器数据选通+, slice4
M0_S5_DMN	M2	I/O	通道 0 存储器数据屏蔽-, slice5
M0_S5_DMP	M1	I/O	通道 0 存储器数据屏蔽+, slice5

M0_S5_DQ40	L1	I/O	通道 0 存储器数据, bit40
M0_S5_DQ41	R1	I/O	通道 0 存储器数据, bit41
M0_S5_DQ42	P1	I/O	通道 0 存储器数据, bit42
M0_S5_DQ43	R2	I/O	通道 0 存储器数据, bit43
M0_S5_DQ44	P2	I/O	通道 0 存储器数据, bit44
M0_S5_DQ45	K1	I/O	通道 0 存储器数据, bit45
M0_S5_DQ46	L2	I/O	通道 0 存储器数据, bit46
M0_S5_DQ47	K2	I/O	通道 0 存储器数据, bit47
M0_S5_DQSN	N1	I/O	通道 0 存储器数据选通-, slice5
M0_S5_DQSP	N2	I/O	通道 0 存储器数据选通+, slice5
M0_S6_DMN	E2	I/O	通道 0 存储器数据屏蔽-, slice6
M0_S6_DMP	E1	I/O	通道 0 存储器数据屏蔽+, slice6
M0_S6_DQ48	D1	I/O	通道 0 存储器数据, bit48
M0_S6_DQ49	H1	I/O	通道 0 存储器数据, bit49
M0_S6_DQ50	G1	I/O	通道 0 存储器数据, bit50
M0_S6_DQ51	Н2	I/O	通道 0 存储器数据, bit51
M0_S6_DQ52	G2	I/O	通道 0 存储器数据, bit52
M0_S6_DQ53	C2	I/O	通道 0 存储器数据, bit53
M0_S6_DQ54	D2	I/O	通道 0 存储器数据, bit54
M0_S6_DQ55	В3	I/O	通道 0 存储器数据, bit55
M0_S6_DQSN	F1	I/O	通道 0 存储器数据选通-, slice6
M0_S6_DQSP	F2	I/O	通道 0 存储器数据选通+, slice6
M0_S7_DMN	AT16	I/O	通道 0 存储器数据屏蔽-, slice7
M0_S7_DMP	AU16	I/O	通道 0 存储器数据屏蔽+, slice7
M0_S7_DQ56	AU14	I/O	通道 0 存储器数据, bit56
M0_S7_DQ57	AT19	I/O	通道 0 存储器数据, bit57
M0_S7_DQ58	AU18	I/O	通道 0 存储器数据, bit58
M0_S7_DQ59	AT18	I/O	通道 0 存储器数据, bit59
M0_S7_DQ60	AT15	I/O	通道 0 存储器数据, bit60
M0_S7_DQ61	AU19	I/O	通道 0 存储器数据, bit61
M0_S7_DQ62	AT14	I/O	通道 0 存储器数据, bit62
M0_S7_DQ63	AU15	I/O	通道 0 存储器数据, bit63
M0_S7_DQSN	AU17	I/O	通道 0 存储器数据选通-, slice7
M0_S7_DQSP	AT17	I/O	通道 0 存储器数据选通+, slice7

M0_S8_DMN	AW12	I/O	通道 0 存储器数据屏蔽-, slice8
M0_S8_DMP	AY12	I/O	通道 0 存储器数据屏蔽+, slice8
M0_S8_DQ64	AY11	I/O	通道 0 存储器数据, bit64
M0_S8_DQ65	AY15	I/O	通道 0 存储器数据, bit65
M0_S8_DQ66	AW15	I/O	通道 0 存储器数据, bit66
M0_S8_DQ67	AY14	I/O	通道 0 存储器数据, bit67
M0_S8_DQ68	AW14	I/O	通道 0 存储器数据, bit68
M0_S8_DQ69	AW11	I/O	通道 0 存储器数据, bit69
M0_S8_DQ70	AY10	I/O	通道 0 存储器数据, bit70
M0_S8_DQ71	AW10	I/O	通道 0 存储器数据, bit71
M0_S8_DQSN	AY13	I/O	通道 0 存储器数据选通-, slice8
M0_S8_DQSP	AW13	I/O	通道 0 存储器数据选通+, slice8
M2_A00	AN40	О	通道 2 存储器地址, bit 0
M2_A01	AK40	О	通道 2 存储器地址, bit 1
M2_A02	AK39	О	通道 2 存储器地址, bit 2
M2_A03	AJ36	О	通道 2 存储器地址, bit 3
M2_A04	AJ37	O	通道2存储器地址, bit 4
M2_A05	AH36	O	通道 2 存储器地址, bit 5
M2_A06	AH37	О	通道 2 存储器地址, bit 6
M2_A07	AJ40	0	通道 2 存储器地址, bit 7
M2_A08	AJ39	0	通道 2 存储器地址, bit 8
M2_A09	AG36	0	通道 2 存储器地址, bit 9
M2_A10	AP40	0	通道 2 存储器地址, bit 10
M2_A11	AG37	О	通道 2 存储器地址, bit 11
M2_A12	AH39	О	通道 2 存储器地址, bit 12
M2_A13	AR37	О	通道 2 存储器地址, bit 13
M2_A14	AF36	О	通道 2 存储器地址, bit 14
M2_A15	AG39	О	通道 2 存储器地址, bit 15
M2 ATB0	AK37	O	通道 2 存储器 ATB0,模拟测试总线信号,留待 IP
MZ_ATD0			公司观察使用。PCB 设计需保证该信号可观察。
M2 ATB1	AK36	О	通道 2 存储器 ATB1,模拟测试总线信号,留待 IP
WIZ_AIDI	AN30		公司观察使用。PCB 设计需保证该信号可观察。
M2_BA0	AN37	О	通道 2 存储器地址, bit 0
M2_BA1	AP39	О	通道 2 存储器地址, bit 1

M2_BA2	AF37	О	通道 2 存储器地址, bit 2
M2_CAL_BLK	AR39	I	通道 2 存储器 CAL_BLK
M2_CAS	AP36	О	通道2存储器列地址选通
M2_CKE0	AG40	О	通道 2 存储器时钟使能, cs 0
M2_CKE1	AE37	О	通道 2 存储器时钟使能, cs 1
M2_CKE2	AE36	О	通道 2 存储器时钟使能, cs 2
M2_CKE3	AF39	О	通道 2 存储器时钟使能, cs 3
M2_CLK0N	AL36	О	通道 2 存储器时钟一, cs0
M2_CLK0P	AL37	О	通道2存储器时钟+,cs0
M2_CLK1N	AL39	О	通道 2 存储器时钟一, cs1
M2_CLK1P	AL40	О	通道 2 存储器时钟+, cs1
M2_CLK2N	AM36	О	通道 2 存储器时钟一, cs2
M2_CLK2P	AM37	О	通道 2 存储器时钟十, cs2
M2_CLK3N	AM39	О	通道 2 存储器时钟一, cs3
M2_CLK3P	AM40	О	通道 2 存储器时钟+, cs3
M2_CS0	AR40	О	通道 2 存储器片, cs0
M2_CS1	AR36	O	通道 2 存储器片选, cs1
M2_CS2	AT36	O	通道 2 存储器片选, cs2
M2_CS3	AT37	О	通道 2 存储器片选, cs3
M2_ODT0	AT39	0	通道2存储器ODT,cs0
M2_ODT1	AU40	0	通道2存储器ODT,cs1
M2_ODT2	AT40	O	通道2存储器ODT,cs2
M2_ODT3	AU39	0	通道2存储器ODT,cs3
M2_PAR_ERR	AH40	I	通道2存储器的奇偶校验结果
M2_PAR_IN	AN39	О	通道2存储器的奇偶校验值
M2_RAS	AN36	О	通道2存储器行地址选通
M2_RESET	AF40	О	通道2存储器复位
M2_WE	AP37	О	通道2存储器写使能
M2_S0_DMN	AT31	I/O	通道 2 存储器数据屏蔽-, slice0
M2_S0_DMP	AU31	I/O	通道2存储器数据屏蔽+, slice0
M2_S0_DQ00	AT32	I/O	通道 2 存储器数据, bit0
M2_S0_DQ01	AT28	I/O	通道2存储器数据,bit1
M2_S0_DQ02	AU29	I/O	通道 2 存储器数据, bit2
M2_S0_DQ03	AT29	I/O	通道2存储器数据,bit3

M2_S0_DQ04	AU28	I/O	通道 2 存储器数据, bit4
M2_S0_DQ05	AU32	I/O	通道 2 存储器数据, bit5
M2_S0_DQ06	AT33	I/O	通道 2 存储器数据, bit6
M2_S0_DQ07	AT34	I/O	通道2存储器数据,bit7
M2_S0_DQSN	AU30	I/O	通道 2 存储器数据选通-, slice0
M2_S0_DQSP	AT30	I/O	通道2存储器数据选通+,slice0
M2_S1_DMN	AW36	I/O	通道 2 存储器数据屏蔽-, slice1
M2_S1_DMP	AV36	I/O	通道 2 存储器数据屏蔽+, slice1
M2_S1_DQ08	AV37	I/O	通道 2 存储器数据, bit08
M2_S1_DQ09	AV33	I/O	通道 2 存储器数据, bit09
M2_S1_DQ10	AV34	I/O	通道 2 存储器数据, bit10
M2_S1_DQ11	AW33	I/O	通道2存储器数据,bitl1
M2_S1_DQ12	AW34	I/O	通道 2 存储器数据, bit12
M2_S1_DQ13	AW37	I/O	通道 2 存储器数据, bit13
M2_S1_DQ14	AV38	I/O	通道 2 存储器数据, bit14
M2_S1_DQ15	AW38	I/O	通道 2 存储器数据, bit15
M2_S1_DQSN	AV35	I/O	通道2存储器数据选通-, slice1
M2_S1_DQSP	AW35	I/O	通道2存储器数据选通+, slice1
M2_S2_DMN	V39	I/O	通道 2 存储器数据屏蔽-, slice2
M2_S2_DMP	V40	I/O	通道 2 存储器数据屏蔽+, slice2
M2_S2_DQ16	U40	I/O	通道 2 存储器数据, bit16
M2_S2_DQ17	AD40	I/O	通道 2 存储器数据, bit17
M2_S2_DQ18	AD39	I/O	通道 2 存储器数据, bit18
M2_S2_DQ19	AC39	I/O	通道 2 存储器数据, bit19
M2_S2_DQ20	AC40	I/O	通道 2 存储器数据, bit20
M2_S2_DQ21	U39	I/O	通道 2 存储器数据, bit21
M2_S2_DQ22	T40	I/O	通道 2 存储器数据, bit22
M2_S2_DQ23	T39	I/O	通道 2 存储器数据, bit23
M2_S2_DQSN	AB40	I/O	通道 2 存储器数据选通-, slice2
M2_S2_DQSP	AB39	I/O	通道 2 存储器数据选通+, slice2
M2_S3_DMN	Y36	I/O	通道 2 存储器数据屏蔽-, slice3
M2_S3_DMP	Y37	I/O	通道2存储器数据屏蔽+, slice3
M2_S3_DQ24	W36	I/O	通道 2 存储器数据, bit24
M2_S3_DQ25	AC36	I/O	通道 2 存储器数据, bit25

M2_S3_DQ26	AB37	I/O	通道 2 存储器数据, bit26
M2_S3_DQ27	AB36	I/O	通道 2 存储器数据, bit27
M2_S3_DQ28	AC37	I/O	通道 2 存储器数据, bit28
M2_S3_DQ29	W37	I/O	通道 2 存储器数据, bit29
M2_S3_DQ30	V37	I/O	通道 2 存储器数据, bit30
M2_S3_DQ31	V36	I/O	通道 2 存储器数据, bit31
M2_S3_DQSN	AA37	I/O	通道 2 存储器数据选通-, slice3
M2_S3_DQSP	AA36	I/O	通道2存储器数据选通+,slice3
M2_S4_DMN	N36	I/O	通道 2 存储器数据屏蔽-, slice4
M2_S4_DMP	N37	I/O	通道 2 存储器数据屏蔽+, slice4
M2_S4_DQ32	M36	I/O	通道 2 存储器数据, bit32
M2_S4_DQ33	T36	I/O	通道 2 存储器数据, bit33
M2_S4_DQ34	R37	I/O	通道 2 存储器数据, bit34
M2_S4_DQ35	R36	I/O	通道 2 存储器数据, bit35
M2_S4_DQ36	T37	I/O	通道 2 存储器数据, bit36
M2_S4_DQ37	M37	I/O	通道 2 存储器数据, bit37
M2_S4_DQ38	L37	I/O	通道 2 存储器数据, bit38
M2_S4_DQ39	L36	I/O	通道 2 存储器数据, bit39
M2_S4_DQSN	P37	I/O	通道 2 存储器数据选通-, slice4
M2_S4_DQSP	P36	I/O	通道 2 存储器数据选通+, slice4
M2_S5_DMN	L39	I/O	通道 2 存储器数据屏蔽-, slice5
M2_S5_DMP	L40	I/O	通道2存储器数据屏蔽+, slice5
M2_S5_DQ40	K40	I/O	通道 2 存储器数据, bit40
M2_S5_DQ41	P40	I/O	通道 2 存储器数据, bit41
M2_S5_DQ42	N40	I/O	通道 2 存储器数据, bit42
M2_S5_DQ43	N39	I/O	通道 2 存储器数据, bit43
M2_S5_DQ44	P39	I/O	通道 2 存储器数据, bit44
M2_S5_DQ45	K39	I/O	通道 2 存储器数据, bit45
M2_S5_DQ46	J40	I/O	通道 2 存储器数据, bit46
M2_S5_DQ47	J39	I/O	通道 2 存储器数据, bit47
M2_S5_DQSN	M40	I/O	通道 2 存储器数据选通-, slice5
M2_S5_DQSP	M39	I/O	通道 2 存储器数据选通+, slice5
M2_S6_DMN	D39	I/O	通道 2 存储器数据屏蔽-, slice6
M2_S6_DMP	D40	I/O	通道2存储器数据屏蔽+, slice6

M2 S6 DO48	C40	I/O	通道 2 存储器数据, bit48
M2_S6_DQ48			
M2_S6_DQ49	G40	I/O	通道2存储器数据,bit49
M2_S6_DQ50	F40	I/O	通道 2 存储器数据, bit50
M2_S6_DQ51	G39	I/O	通道 2 存储器数据, bit51
M2_S6_DQ52	F39	I/O	通道 2 存储器数据, bit52
M2_S6_DQ53	C39	I/O	通道 2 存储器数据, bit53
M2_S6_DQ54	B39	I/O	通道 2 存储器数据, bit54
M2_S6_DQ55	B38	I/O	通道 2 存储器数据, bit55
M2_S6_DQSN	E40	I/O	通道2存储器数据选通-, slice6
M2_S6_DQSP	E39	I/O	通道 2 存储器数据选通+, slice6
M2_S7_DMN	AT24	I/O	通道 2 存储器数据屏蔽-, slice7
M2_S7_DMP	AU24	I/O	通道 2 存储器数据屏蔽+, slice7
M2_S7_DQ56	AT25	I/O	通道 2 存储器数据, bit56
M2_S7_DQ57	AT22	I/O	通道 2 存储器数据, bit57
M2_S7_DQ58	AU21	I/O	通道 2 存储器数据, bit58
M2_S7_DQ59	AT21	I/O	通道 2 存储器数据, bit59
M2_S7_DQ60	AU25	I/O	通道 2 存储器数据, bit60
M2_S7_DQ61	AU22	I/O	通道 2 存储器数据, bit61
M2_S7_DQ62	AU26	I/O	通道 2 存储器数据, bit62
M2_S7_DQ63	AT26	I/O	通道 2 存储器数据, bit63
M2_S7_DQSN	AU23	I/O	通道 2 存储器数据选通-, slice7
M2_S7_DQSP	AT23	I/O	通道 2 存储器数据选通+, slice7
M2_S8_DMN	AW26	I/O	通道 2 存储器数据屏蔽-, slice8
M2_S8_DMP	AY26	I/O	通道 2 存储器数据屏蔽+, slice8
M2_S8_DQ64	AY27	I/O	通道 2 存储器数据, bit64
M2_S8_DQ65	AW24	I/O	通道 2 存储器数据, bit65
M2_S8_DQ66	AY23	I/O	通道 2 存储器数据, bit66
M2_S8_DQ67	AW27	I/O	通道 2 存储器数据, bit67
M2_S8_DQ68	AY24	I/O	通道 2 存储器数据, bit68
M2_S8_DQ69	AW28	I/O	通道 2 存储器数据, bit69
M2_S8_DQ70	AY28	I/O	通道 2 存储器数据, bit70
M2_S8_DQ71	AW23	I/O	通道 2 存储器数据, bit71
M2_S8_DQSN	AY25	I/O	通道 2 存储器数据选通-, slice8
M2_S8_DQSP	AW25	I/O	通道 2 存储器数据选通+, slice8
沙宁			'

注:

- (1)信号类型: I 输入引脚, O 输出引脚, I/O 双向引脚, Z 三态或高阻引脚, A 模拟信号脚, GND 地, P 电源引脚, RSV 保留引脚, NC 空引脚;
 - (2)片内上下拉: IPU 片内上拉, IPD 片内下拉。

8.5 电源引脚 (552 PIN)

表 8-5 电源引脚

信号名	引脚	信号	片内	功能说明
信与石	编号	类型	上下拉	切配匠奶
VDD_CORE	AA7			
VDD_CORE	AA8			
VDD_CORE	AA33			
VDD_CORE	AA34			
VDD_CORE	AB6			
VDD_CORE	AB8			
VDD_CORE	AB33			
VDD_CORE	AJ12			
VDD_CORE	AJ14			
VDD_CORE	AJ15			
VDD_CORE	AJ16			
VDD_CORE	AJ17			
VDD_CORE	AJ18			 0.9V 内核电源(104 PIN)
VDD_CORE	AJ19			0.5 v / y / y / y · (10+111v)
VDD_CORE	AJ20			
VDD_CORE	AJ21			
VDD_CORE	AJ22			
VDD_CORE	AJ23			
VDD_CORE	AJ27			
VDD_CORE	AJ28			
VDD_CORE	AJ29			
VDD_CORE	AJ30			
VDD_CORE	AM10			
VDD_CORE	AM12			
VDD_CORE	AM14			
VDD_CORE	AM16			

VDD_CORE	AM18			
VDD_CORE	AM20			
VDD_CORE	AM26			
VDD_CORE	AM28			
VDD_CORE	AM30			
VDD_CORE	AR10			
VDD_CORE	AR12			
VDD_CORE	AR14			
VDD_CORE	AR16			
VDD_CORE	AR26			
VDD_CORE	AR28			
VDD_CORE	AR30			
VDD_CORE	L19			
VDD_CORE	L21			
VDD_CORE	L23			
VDD_CORE	L25			
VDD_CORE	L27			
VDD_CORE	L31			
VDD_CORE	L33			
VDD_CORE	M6		· ·	
VDD_CORE	M8			
VDD_CORE	M9	/		
VDD_CORE	M10			
VDD_CORE	M11			
VDD_CORE	M12			
VDD_CORE	M13			
VDD_CORE	M14			
VDD_CORE	M15			
VDD_CORE	M16			
VDD_CORE	M17			
VDD_CORE	M18			
VDD_CORE	M19			
VDD_CORE	M20			
VDD_CORE	M21			

VDD_CORE	M22		
VDD_CORE	M23		
VDD_CORE	M24		
VDD_CORE	M25		
VDD_CORE	M26		
VDD_CORE	M27		
VDD_CORE	M28		
VDD_CORE	M29		
VDD_CORE	M30		
VDD_CORE	M32		
VDD_CORE	M33		
VDD_CORE	M35		
VDD_CORE	N7		
VDD_CORE	N8		
VDD_CORE	N33		
VDD_CORE	N34		
VDD_CORE	P6		
VDD_CORE	P8		
VDD_CORE	P33		
VDD_CORE	P35		
VDD_CORE	R7		
VDD_CORE	R8		
VDD_CORE	R33		
VDD_CORE	R34		
VDD_CORE	Т6		
VDD_CORE	Т8		
VDD_CORE	Т33		
VDD_CORE	T35		
VDD_CORE	U7		
VDD_CORE	U8		
VDD_CORE	U33		
VDD_CORE	U34		
VDD_CORE	V6		
VDD_CORE	V8		

VDD_CORE			
VDD CORE	VDD_CORE	V33	
VDD_CORE	VDD_CORE	V35	
VDD_CORE	VDD_CORE	W7	
VDD_CORE	VDD_CORE	W8	
VDD_CORE	VDD_CORE	W33	
VDD_CORE	VDD_CORE	W34	
VDD_CORE	VDD_CORE	Y6	
VDD_CORE	VDD_CORE	Y8	
VDD_IO	VDD_CORE	Y33	
VDD_IO	VDD_CORE	Y35	
VDD_IO	VDD_IO	AJ24	
VDD_IO	VDD_IO	AJ25	100/涌用10米祭咖件由由派(4 DD1)
VDDA_PCIE	VDD_IO	AM22	7 1.6 V 迪用 IO 矢目腳供电电源(4 PIN)
VDDA_PCIE	VDD_IO	AM24	
VDDA_PCIE	VDDA_PCIE	K6	
VDDA_PCIE K12 VDDA_PCIE K14 VDDA_PCIE K16 VDDA_PCIE K18 VDDA_PCIE K20 VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30	VDDA_PCIE	K8	
VDDA_PCIE K14 VDDA_PCIE K16 VDDA_PCIE K18 VDDA_PCIE K20 VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30	VDDA_PCIE	K10	
VDDA_PCIE K16 VDDA_PCIE K18 VDDA_PCIE K20 VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30	VDDA_PCIE	K12	7
VDDA_PCIE K18 VDDA_PCIE K20 VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30	VDDA_PCIE	K14	
VDDA_PCIE K20 VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	K16	
VDDA_PCIE K22	VDDA_PCIE	K18	
VDDA_PCIE K22 VDDA_PCIE K24 VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	K20	0.05V DCIE 由循(16 DIN)
VDDA_PCIE L7 VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	K22	U.75 V FUIL 电燃 (IUFIN)
VDDA_PCIE L9 VDDA_PCIE L11 VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	K24	
VDDA_PCIE	VDDA_PCIE	L7	
VDDA_PCIE L13 VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	L9	
VDDA_PCIE L15 VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	L11	
VDDA_PCIE L17 VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	L13	
VDDHV_PCIE K26 VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	L15	
VDDHV_PCIE K28 VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDA_PCIE	L17	
VDDHV_PCIE K30 1.5V 的 PCIE 电源(6 PIN)	VDDHV_PCIE	K26	
VDDHV_PCIE K30	VDDHV_PCIE	K28	15V 州 DCIE 中海(C DINI)
VDDHV PCIE K32	VDDHV_PCIE	K30	Ţ I.J V 的 PCIE 电源(O PIN)
VDDIV_I CIL K32	VDDHV_PCIE	K32	

VDDHV_PCIE	K34	
VDDHV_PCIE	L29	
VDDHV_PLL0	AJ13	1 OV 的培训中派(2 DINI)
VDDHV_PLL1	AJ26	│ 1.8V 的模拟电源(2 PIN) │
VDDQ_MCU01	AC7	
VDDQ_MCU01	AC8	
VDDQ_MCU01	AD6	
VDDQ_MCU01	AD8	
VDDQ_MCU01	AE3	
VDDQ_MCU01	AF6	
VDDQ_MCU01	AG3	
VDDQ_MCU01	AH6	
VDDQ_MCU01	AJ3	
VDDQ_MCU01	AJ9	1.5V DDR3 DIMM 接口电源(20 PIN)
VDDQ_MCU01	AJ11	1.5V DDR3 DIMM 按口电源(20 FIN)
VDDQ_MCU01	AK6	
VDDQ_MCU01	AL3	
VDDQ_MCU01	AM6	
VDDQ_MCU01	AN3	
VDDQ_MCU01	AP6	
VDDQ_MCU01	AR3	
VDDQ_MCU01	AT6	
VDDQ_MCU01	AU3	
VDDQ_MCU01	AV6	
VDDQ_MCU23	AB35	
VDDQ_MCU23	AC33	
VDDQ_MCU23	AC34	
VDDQ_MCU23	AD33	
VDDQ_MCU23	AD35	1.5V DDR3 DIMM 接口电源(20 PIN)
VDDQ_MCU23	AE38	1.5 v DDR3 DIIVIIVI 安日电你(20 FIIV)
VDDQ_MCU23	AF35	
VDDQ_MCU23	AG38	
VDDQ_MCU23	AH35	
VDDQ_MCU23	AJ31	

VDDQ_MCU23	AJ32	
VDDQ_MCU23	AJ38	
VDDQ_MCU23	AK35	
VDDQ_MCU23	AL38	
VDDQ_MCU23	AM35	
VDDQ_MCU23	AN38	
VDDQ_MCU23	AP35	
VDDQ_MCU23	AR38	
VDDQ_MCU23	AT35	
VDDQ_MCU23	AU38	
VSS	A4	
VSS	A6	
VSS	A12	
VSS	A14	
VSS	A16	
VSS	A18	
VSS	A24	
VSS	A26	
VSS	A28	
VSS	A30	
VSS	AA3	
VSS	AA6	· 数字地(380 PIN)
VSS	AA35	数于地(300FIIV)
VSS	AA38	
VSS	AB3	
VSS	AB7	
VSS	AB34	
VSS	AB38	
VSS	AC3	
VSS	AC6	
VSS	AC35	
VSS	AC38	
VSS	AD3	
VSS	AD7	

VSS	AD36		
VSS	AD37		
VSS	AD38		
VSS	AE4		
VSS	AE5		
VSS	AE6		
VSS	AE35		
VSS	AE39		
VSS	AE40		
VSS	AF1		
VSS	AF2		
VSS	AF3		
VSS	AF38		
VSS	AG6		7
VSS	AG35		
VSS	AH3		
VSS	AH38		
VSS	AJ6		
VSS	AJ35		
VSS	AK3		
VSS	AK38	\checkmark	
VSS	AL6		
VSS	AL35		
VSS	AM3		
VSS	AM9		
VSS	AM11		
VSS	AM13		
VSS	AM15		
VSS	AM17	 	
VSS	AM19		
VSS	AM21	 	
VSS	AM23		
VSS	AM25		
VSS	AM27	 	

VSS	AM29		
VSS	AM31		
VSS	AM32		
VSS	AM38		
VSS	AN6		
VSS	AN35		
VSS	AP3		
VSS	AP38		
VSS	AR6		
VSS	AR7		
VSS	AR8		
VSS	AR9		
VSS	AR11		
VSS	AR13		
VSS	AR15		
VSS	AR17		
VSS	AR18		
VSS	AR19		
VSS	AR20		
VSS	AR21	*	
VSS	AR22	_	
VSS	AR23		
VSS	AR24		
VSS	AR25		
VSS	AR27		
VSS	AR29		
VSS	AR31		
VSS	AR32		
VSS	AR33		
VSS	AR34		
VSS	AR35		
VSS	AT3		
VSS	AT13		
VSS	AT20		

VSS	AT27		
VSS	AT38		
VSS	AU6		
VSS	AU13		
VSS	AU20		
VSS	AU27		
VSS	AU33		
VSS	AU34		
VSS	AU35		
VSS	AU36		
VSS	AU37		
VSS	AV3		
VSS	AV4		
VSS	AV5		
VSS	AV7		
VSS	AV8	,	
VSS	AV9		
VSS	AV10		
VSS	AV11		
VSS	AV12		
VSS	AV13		
VSS	AV14		
VSS	AV15		
VSS	AV16	7	
VSS	AV17		
VSS	AV18		
VSS	AV19		
VSS	AV20		
VSS	AV21		
VSS	AV22		
VSS	AV23		
VSS	AV24		
VSS	AV25		
VSS	AV26		

VSS	AV27		
VSS	AV28		
VSS	AV29		
VSS	AV30		
VSS	AV31		
VSS	AV32		
VSS	AV39		
VSS	AW2		
VSS	AW9		
VSS	AW16		
VSS	AW32		
VSS	AY9		
VSS	AY16		
VSS	B4		/
VSS	В6	A	
VSS	В8		
VSS	B10		
VSS	B12		
VSS	B14		
VSS	B16		
VSS	B18		
VSS	B24		
VSS	B26		
VSS	B28		
VSS	B30		
VSS	B31		
VSS	В33		
VSS	B35		
VSS	B37		
VSS	С3		
VSS	C5		
VSS	C7		
VSS	C8		
VSS	C10		

VSS VSS VSS	C11		
	C13		
VCC	C13		
VSS	C15		
VSS	C17		
VSS	C19		
VSS	C21		
VSS	C23		
VSS	C25		
VSS	C27		
VSS	C29		
VSS	C31		
VSS	C33	 	
VSS	C35		
VSS	C37		7
VSS	C38		
VSS	D3		
VSS	D5		
VSS	D7		/
VSS	D9		
VSS	D11		
VSS	D13		
VSS	D15		
VSS	D17		
VSS	D19		
VSS	D21		
VSS	D23		
VSS	D25		
VSS	D27		
VSS	D29		
VSS	D31		
VSS	D32		
VSS	D34		
VSS	D36		
VSS	D38		

VSS E3 VSS E4 VSS E6 VSS E7 VSS E9 VSS E11 VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E6 VSS E7 VSS E9 VSS E11 VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E7 VSS E9 VSS E11 VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E9 VSS E11 VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E11 VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E12 VSS E14 VSS E16 VSS E18 VSS E20	
VSS E14 VSS E16 VSS E18 VSS E20	
VSS E16 VSS E18 VSS E20	
VSS E18 VSS E20	
VSS E20	
VSS E22	
VSS E24	
VSS E26	
VSS E28	
VSS E30	
VSS E32	
VSS E34	
VSS E36	
VSS E38	
VSS F3	
VSS F4	
VSS F6	
VSS F8	
VSS F10	
VSS F12	
VSS F14	
VSS F16	
VSS F18	
VSS F20	
VSS F22	
VSS F24	
VSS F26	
VSS F28	

VSS	F30		
VSS	F32		
VSS	F33		
VSS	F35		
VSS	F37		
VSS	F38		
VSS	G3		
VSS	G5		
VSS	G6		
VSS	G8		
VSS	G10		
VSS	G12	 	
VSS	G13		
VSS	G15		7
VSS	G17		
VSS	G19		
VSS	G21		
VSS	G23		
VSS	G25		
VSS	G27		
VSS	G29		
VSS	G31		
VSS	G33		
VSS	G35		
VSS	G37		
VSS	G38		
VSS	Н3		
VSS	Н5		
VSS	Н7		
VSS	Н9		
VSS	H11		
VSS	H13		
VSS	H15		
VSS	H17		

VSS	H19		
VSS	H21		
VSS	H23		
VSS	H25		
VSS	H27		
VSS	H29		
VSS	H31		
VSS	Н33		
VSS	H34		
VSS	H36		
VSS	H38		
VSS	H39		
VSS	H40		
VSS	J1		
VSS	Ј2		
VSS	Ј3		
VSS	J4		
VSS	J5		
VSS	Ј7		
VSS	Ј9		
VSS	J11	_	
VSS	J13		
VSS	J14		
VSS	J16		
VSS	J18		
VSS	J20		
VSS	J22		
VSS	J24		
VSS	J26		
VSS	J28		
VSS	J30		
VSS	J32		
VSS	J34		
VSS	J36		

VSS	J38		
VSS	К3		
VSS	K4		
VSS	K5		
VSS	K7		
VSS	К9		
VSS	K11		
VSS	K13		
VSS	K15		
VSS	K17		
VSS	K19		
VSS	K21		
VSS	K23		
VSS	K25		
VSS	K27		
VSS	K29		
VSS	K35		
VSS	K36		
VSS	K37		
VSS	K38		
VSS	L3		
VSS	L4		
VSS	L5		
VSS	L6		
VSS	L8		
VSS	L10		
VSS	L12		
VSS	L14		
VSS	L16		
VSS	L18		
VSS	L20		
VSS	L22		
VSS	L24		
VSS	L26		

	1	1	
VSS	L28		
VSS	L30		
VSS	L32		
VSS	L34		
VSS	L35		
VSS	L38		
VSS	M3		
VSS	M7		
VSS	M34		
VSS	M38		
VSS	N3		
VSS	N6		
VSS	N35		
VSS	N38		
VSS	Р3		
VSS	P7		
VSS	P34		
VSS	P38		
VSS	R3		
VSS	R6		
VSS	R35	_	
VSS	R38		
VSS	R39		
VSS	R40		
VSS	T1		
VSS	T2		
VSS	Т3		
VSS	Т7		
VSS	T34		
VSS	T38		
VSS	U3		
VSS	U6		
VSS	U35		
VSS	U36		

VSS	U37	
VSS	U38	
VSS	V3	
VSS	V4	
VSS	V5	
VSS	V7	
VSS	V34	
VSS	V38	
VSS	W3	
VSS	W6	
VSS	W35	
VSS	W38	
VSS	Y3	
VSS	Y7	 / / /
VSS	Y34	
VSS	Y38	

注:

- (1)信号类型: I 输入引脚, O 输出引脚, Z 三态或高阻引脚, A 模拟信号脚, GND 地, P 电源引脚, RSV 保留引脚, NC 空引脚;
 - (2)片内上下拉: IPU 片内上拉, IPD 片内下拉。